• Title/Summary/Keyword: Dissolved organic nitrogen

Search Result 157, Processing Time 0.035 seconds

Environmental impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farming system (비순환식 양액재배에서 발생하는 폐양액, 폐배지, 폐작물이 환경에 미치는 영향)

  • Park, Bounglog;Cho, Hongmok;Kim, Minsang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.1
    • /
    • pp.19-27
    • /
    • 2021
  • Hydroponic farming is a method to grow a plant without soil. Plants can be grown on water or hydroponic growing media, and they are fed with mineral nutrient solutions, which are fertilizers dissolved into water. Hydroponic farming has the advantage of increasing plant productivity over conventional greenhouse farming. Previous studies of hydroponic nutrient wastewater from acyclic hydroponic farms pointed out that hydroponic nutrient wastewater contained residual nutrients, and they were drained to a nearby river bank which causes several environmental issues. Also, previous studies suggest that excessive use of the nutrient solution and disposal of used hydroponic growing media and crop wastes in hydroponic farms are major problems to hydroponic farming. This study was conducted to determine the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment by analyzing water quality and soil analysis of the above three factors. Three soil cultivation farms and several hydroponic farms in the Gangwon C region were selected for this study. Samples of water and soils were collected from both inside and outside of each farm. Also, a sample of soil and leachate from crop waste piles stacked near the farm was collected for analysis. Hydroponic nutrient wastewater from acyclic hydroponic farm contained an average of 402 mg/L of total nitrogen (TN) concentration, and 77.4 mg/L of total phosphate (TP) concentration. The result of TP in hydroponic nutrient wastewater exceeds the living environmental standard of the river in enforcement decree of the framework act on environmental policy by 993.7 times. Also, it exceeds the standard of industrial wastewater discharge standards under the water environment conservation act by 6~19 times in TN, and 2~27 times in TP. Leachate from crop waste piles contained 11,828 times higher COD and 395~2662 times higher TP than the standard set by the living environmental standard of the river in enforcement decree of the framework act on environmental policy and exceeds 778 times higher TN and 5 times higher TP than the standard of industrial wastewater discharge standards under the water environment conservation act. For more precise studies of the impact of hydroponic nutrient wastewater, used hydroponic growing media, and crop wastes from acyclic hydroponic farms on the surrounding environment, additional information regarding a number of hydroponic farms, arable area(ha), hydroponic farming area, seasonal, weather, climate factor around the river, and the property of the area and farm is needed. Analysis of these factors and additional water and soil samples are needed for future studies.

Geochemical Characteristics and Benthos Distribution in the Three Shellfish Farms in Suncheon Bay, Korea (순천만 패류 양식장 3개소의 지화학적 특성과 저서생물상 분포 -가리맛조개 양식장과 새꼬막 양식장-)

  • Suh, Jinsoo;Kim, Taehoon;Shin, Seyeon;Kahng, Hyung-Yeel;Ahn, Samyoung;Jung, Jae-Sung;Kim, Youngsung;Won, Nam-Il
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.691-710
    • /
    • 2017
  • This study was performed to investigate the geochemical and benthic environment of three shellfish farms in Suncheon Bay during the period of September 2014 ~ April 2015. Three sampling stations were selected; St.1 is the shellfish farm of razor clam near Jangsan area. St.2 is the shellfish farm of small ark shell near Hwapo area and St.3 is the shellfish farm of razor clam near Yongdu area. Razor clam was the dominant species at St.1, small ark shell and granulated ark shell were dominant at St.2 and St.3, respectively. Granulated ark shell inhabited St.3, although it is not cultured at that station. This station's exposure to air during the ebb tide and sediment composition likely provides the appropriate habitat for granulated ark shell species. Analysis of the number of different species showed that 8 benthos species were found to be distributed at St.1, 18 species at St.2, and 13 species at St.3. Among three stations, the highest Ignition Loss (IL), Chemical Oxygen Demand (COD) and Acid Volatile Sulfide (AVS) values were obtained from the sediment at St.2. The analysis of pore water from St.2 also showed the highest values of Total Organic Carbon (TOC), ammonia ($NH_4^+$), Dissolved Inorganic Nitrogen (DIN) and phosphate ($PO_4^{3-}$). These results are related to the fact that species dominance and richness is the highest in St.2.

Development and Operation of Canal-type CROM for Water Quality Improvement of Eutrophic Reservoir: Mussel Density Effect (부영양 저수지의 수질개선을 위한 수로형 CROM 개발 및 운영: 패류밀도의 효과)

  • Kim, Baik-Ho;Min, Han-Na;Lee, Song-Hee;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.369-376
    • /
    • 2010
  • A novel or canal-type continuous removal of organic matter (C-CROM) with combined freshwater bivalves (Unio douglasiae and Anodonta woodiana) was developed to improve the water quality (IWQ) of eutrophic reservoirs. The first experiment was performed for 12 days to measure the IWQ using 256 individuals of combined bivalves (ca. 7:3), at the same density that distributed in the collection stream. The second experiment was conducted to evaluate the efficacy of IWQ with the addition of each 30% of two mussels for 14 days. Results indicated that a novel C-CROM significantly decreased suspended solids, chlorophyll-$\alpha$, transparency, total nitrogen and phosphorus, and increased ammonium and biodeposition (t-test, P<0.001 for all), while other dissolved inorganic nutrients such as $NO_2$, $NO_3$, and SRP did not change (t-test, P>0.5). Daily IWQ performances of C-CROM with combined mussels was about two times higher to the previous studies using single species where less suspended inorganic nutrients were released except for ammonia. Collectively, a C-CROM is more strategic to the water quality improvement of eutrophic lake.

Prodution and Properties of the Insoluble Penicillinase from Streptomyces (방선균이 분비하는 불용성 Penicillinase)

  • 이동희;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.3
    • /
    • pp.135-140
    • /
    • 1979
  • A Streptomyces sp. strain AS-727 which was capable of producing penicillinase, was isolated from soil. The enzyme production was affected by the carbon and nitrogen sources added. Among them so far tested, glucose (or maltose) and sodium nitrate increased the enzyme production. And the amount of enzyme prodced reached maximum in 4 days cultivation. The optimla pH and temperature of the penicillinase was between pH 6.0 to 8.0 and 4$0^{\circ}C$ respectively. The stabel pH range of the enzyme was stable at 4$0^{\circ}C$, but it lost about 30% and 40% of the the activity respectively when it was treated at 6$0^{\circ}C$ and 8$0^{\circ}C$ for 60 minutes. The activity of the enzyme was inhibited by Z $n^{++}$, but A $g^{+}$, $Co^{++}$, $_Mn^{++}$, $Ca^{++}$, P $b^{++}$ did not affected enzyme activity. Peculiarly, the enzyme protein precipitated by freezing or addition of ammonium sulfate, urea, sodium chloride and some organic solvents as etanol, methanol, acetone was not dissolved in deionized water or any buffer solution.n.n.ion.n.n.

  • PDF

Evaluation of Basic Unit for Non-point Pollutants in Runoff of West Coast Highway - Maesong Area (서해안 고속도로 매송지역 비점오염원 원단위 산정 연구)

  • Park, Seyong;Mo, Kyung;Kim, Leehyung;Kang, Heeman;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.33-40
    • /
    • 2010
  • In this study, evaluation of basic unit of non-point pollutant, which is fundamental evaluation of non-point loading, was conducted using both road point and angle of intersection point in Maesong area, West coast highway by utilizing Event Mean Concentrations(EMC). Concentration of pollutants except heavy metals at these two points rapidly decreased in 30 minutes after start of runoff. According to the results of EMC, for both sampling points, it was determined that the concentrations of TSS(Total Suspended Solid), $BOD_5$(Biological Oxygen Demand), and DOC(Dissolved Organic Carbon) were higher than those of wastewater effluent standard in Korea, however, the concentrations of T-N(Total Nitrogen) and T-P(Total Phosphorus) were lower than those of the standard. In terms of heavy metals, Fe, Pb, and Zn showed higher concentrations than others. When compared with the units established by the Ministry of Environment in Korea, the basic units of $BOD_5$ and T-N in this study were lower. On the other hand, when compared with foreign units, Cu, Pb, and Zn showed approximately 10 times higher concentrations. It was estimated that a long term monitoring should be conducted for obtaining additional data and more reliable basic units for the non-point pollutnats based on the results from this study.

Analysis of RCSTP And MWTP Pollutants Treatment Efficiency in Bong-Hwa Gun (봉화군 마을하수도 및 하수처리장의 오염물질 처리 효율 분석)

  • Park, Minsoo;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.69-79
    • /
    • 2017
  • Protected area of water for supply source is located mostly of rural area in Korea. Normally, sewage treatment system is poor to manage in rural, because low population and density. Rural area need sewage treatment system to supervise supply source of water. In this study, analysis on operation result of 4 RCSTP and MWTP is located at the rural area. Higher concentration of pollutant were inflows to MWTP than RCSTP, and effluent quality standard is satisfaction. However, RCSTP effluent pollutant concentrations was researched higher than MWTP. The organic matter(BOD, COD) were about 5% of a high treatment efficiency to a median. The nutrient(T-N, T-P) were detected Up to high 30%. Also, we analyzed to effect reactor operational parameters on the pollutant treatment efficiency like mixed liquer suspended solid(MLSS), dissolved oxygen(DO) and sludge retention time(SRT). As a result, pollutant treatment efficiency showed fluctuation in accordance with operating condition. Thus, it is necessary to manage the reactor operation condition for management of rural area sewage treatment.

Effect of input variable characteristics on the performance of an ensemble machine learning model for algal bloom prediction (앙상블 머신러닝 모형을 이용한 하천 녹조발생 예측모형의 입력변수 특성에 따른 성능 영향)

  • Kang, Byeong-Koo;Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.417-424
    • /
    • 2021
  • Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.

Classification of Major Reservoirs Based on Water Quality and Changes in Their Trophic Status in South Korea (수질 특성에 따른 우리나라 주요 호소 분류 및 호소 영양 상태 변동 특성 분석)

  • Dae-Seong Lee;Da-Yeong Lee;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.156-166
    • /
    • 2022
  • Understanding the characteristics of reservoir water quality is fundamental in reservoir ecosystem management. The water quality of reservoirs is affected by various factors including hydro-morphology of reservoirs, land use/cover, and human activities in their catchments. In this study, we classified 83 major reservoirs in South Korea based on nine physicochemical factors (pH, dissolved oxygen, chemical oxygen demand, total suspended solid, total nitrogen, total phosphorus, total organic carbon, electric conductivity, and chlorophyll-a) measured for five years (2015~2019). Study reservoirs were classified into five main clusters through hierarchical cluster analysis. Each cluster reflected differences in the water quality of reservoirs as well as hydromorphological variables such as elevation, catchment area, full water level, and full storage. In particular, water quality condition was low at a low elevation with large reservoirs representing cluster I. In the comparison of eutrophication status in major reservoirs in South Korea using the Korean trophic state index, in some reservoirs including cluster IV composed of lagoons, the eutrophication was improved compared to 2004~2008. However, eutrophication status has been more impaired in most agricultural reservoirs in clusters I, III, and V than past. Therefore, more attention is needed to improve the water quality of these reservoirs.

A Basic Study on the Euryale ferox Salisbury for Introduction in Garden Pond(II) - Focusing with Soil and Water Conditions - (정원 연못내 가시연꽃(Euryale ferox Salisbury) 도입을 위한 기초연구 II - 토양과 수환경을 중심으로 -)

  • Lee, Suk-Woo;Rho, Jae-Hyun;Park, Jae-Cheol;Kim, Hwa-Ok
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.3
    • /
    • pp.28-37
    • /
    • 2016
  • Through the research and analysis on the hydrological environment and soil environment of habitats through documentary and field studies over 14 habitats of Euryale ferox Salisb. within Jeollabukdo, with the objective of acquiring the basic data for forming an environment based on plantation of reservoirs that are composed with Euryale ferox, the following results were obtained. As a result of analyzing the construction period of the habitats of Euryale ferox from a total of 14 places, the average period of duration after construction of all subject reservoirs appeared to be 71.8 years. Moreover, when examining the relationship between the age of reservoirs and eutrophication, it could be judged that at least the eutrophication of subsoil and water environment is not an obstacle to the growth of Euryale ferox grows in habitats that have a reservoir age of approximately 70 years or more. As a result of analyzing the gardening of soil sediment of the Euryale ferox habitats, the component ingredients appeared to be composed of 80.2% of clay, 16.7% of silt and 3.1% of sand, and the soil class pursuant to such was classified as 'heavy clay'. The organic matter contents of soil sediment appeared to be an average of 36g/kg, and there appeared to be no noticeable difference between the habitats and non-habitats of Euryale ferox. The water quality environment of Euryale ferox habitat appeared to be pH 6.5~7.9, concentration of dissolved oxygen to be $1.8{\sim}8.8mg/{\ell}$, concentration of COD to be $6.8{\sim}74mg/{\ell}$, floating materials to be $2.0{\sim}213mg/{\ell}$, total nitrogen to be $0.422{\sim}10.723mg/{\ell}$, and phosphate to be $0.003{\sim}0.126mg/{\ell}$. The average DO concentration of Aedang Reservoir at Jeongeup, Daejeong Reservoir at Imsil, and Myeongdeokji at Gimje with high vitality and green coverage ratio of Euryale ferox appeared to be $3.5mg/{\ell}$, total nitrogen to be $1.33mg/{\ell}$, and concentration of phosphorus-phosphate to be $0.061mg/{\ell}$. When comparing such with the entire average value, the DO and total nitrogen concentration appeared to be rather low, and the phosphorus-phosphate concentration appeared to be higher by two times or more, thus, an in-depth study on the correlation of the vitality of Euryale ferox Salisb. and concentration of phosphorate-phosphorus will be needed in the future.

Long-Term Variations of Water Quality in Jinhae Bay (진해만의 장기 수질변동 특성)

  • Kwon, Jung-No;Lee, Jangho;Kim, Youngsug;Lim, Jae-Hyun;Choi, Tae-Jun;Ye, Mi-Ju;Jun, Ji-Won;Kim, Seulmin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.324-332
    • /
    • 2014
  • In order to reveal the long-term variations of water quality in Jinhae Bay, water qualities had been monitored at 9 survey stations of Jinhae Bay during 2000~2012. The surface and bottom waters concentrations of chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and chlorophyll-a (Chl.-a) were higher at the survey stations of Masan Bay than the stations of other Bays. Especially, station 1 which is located at the inner area of Masan Bay had the highest values in the concentrations of COD, DIN, and Chl.-a because there were terrestrial pollutant sources near the station 1 and sea current had not well circulated in the inner area of Masan Bay. In factor analysis, the station 1 also had the highest factor values related to factors which increase organic matters and nutrients in surface and bottom waters of Masan Bay. However, the stations (st.5, st.6, st.7, st.8, and st.9) of other Bays had lower values of the factors. In time series analysis, the COD concentrations of the bottom waters at 8 stations except for station 1 distinctly decreased. However, the COD concentrations of the surface waters showed no distinct decrease trends at all stations. In the concentrations of nutrients (DIN and DIP) of both surface and bottom waters, there were tremendous decrease trends at all stations. Therefore, these distinct decrease trends of the COD in bottom waters and the nutrients in surface and bottom waters of Jinhae Bay could have been associated with water improvement actions such as TPLMS (total pollution load management system).