• Title/Summary/Keyword: Dissolved organic matter (DOM)

Search Result 67, Processing Time 0.025 seconds

RESEARCH PAPERS : CHARACTERIZATION OF DISSOLVED ORGANIC MATTER IN A SHALLOW EUTROPHIC LAKE AND INFLOWING WATERS

  • Kim, Yong-Hwan;Lee, Seon-Hwa;Akio, Imai;Kazuo, Matsushige
    • Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • The seasonal patterns of dissolved organic matter (DOM) in Lake Kasumigaura, a shallow, eutrophic lake, and serveral DOM sources in its catchment area were investigated. DOM was fractionated using three resin adsorbents into classes: aquatic humic substances (AHS=humic acid+fulvic acid), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS) and hydrophilic neutrals (HiN). The DOM produced significantly different fraction distributions depending on the origin of sample. AHS and HiA prevailed over AHS in the lake while AHS and HiA existed at almost the same concentration levels in the rivers. AHS seems to be a more dominant component in rever water than lake water. The dominance of organic acids was also observed in the DOM sources: forest stream (FS), plowed field percolate (PFP), domestic sewage (DS) and sewage treatment plant effluent (STPE).

Effects of Humic Substances on the Changes of Dissolved Organic Matter Characteristics by Biodegradation (생분해 과정 중 용존 유기물 특성 변화에 미치는 휴믹물질의 영향)

  • Park, Min-Hye;Lee, Bo-Mi;Lee, Tae-Hwan;Hur, Jin;Yang, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.419-424
    • /
    • 2009
  • Characteristics of humic substances on the changes in dissolved organic matter (DOM) characteristics by biodegradation was investigated using three types of the artificial water samples composed of glucose and Suwannee River fulvic acid (SRFA). Some selected DOM characteristics including the specific UV absorbance (SUVA), the synchronous fluorescence spectra and the molecular weight (MW) were compared for the artificial water samples before and after 28-day microbial incubation. The changes of the DOM characteristics were minimal for SRFA during the incubation whereas they were significant for glucose. SUVA, dissolved organic carbon (DOC)-normalized fluorescence intensity, and MW values of glucose increased, suggesting that such labile organic compounds could be exclusively transformed into more humidified materials by biodegradation. For glucose-SRFA mixture, the selected DOM characteristics were greater than those estimated using the assumption that the individual changes of either glucose or SRFA are conservative for the mixture of the two materials. Our results suggest that the presence of humic substances (HS) may lead to the enhancement of the formation of refractory organic materials during biodegradation of labile compounds. Detailed analyses of size exclusion chromatography (SEC) revealed that the enhancement occurred for the DOM mixture with a MW range between 500 Da to 4000 Da.

Molecular Characterization of Dissolved Organic Matter Unveils their Complexity, Origin, and Fate in Glacier and Glacial-Fed Streams and Lakes on the Tibetan Plateau

  • Kim, Min Sung;Zhou, Lei;Choi, Mira;Zhang, Yunlin;Zhou, Yongqiang;Jang, Kyoung-Soon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.192-199
    • /
    • 2021
  • Alpine glaciers harbor a large quantity of bio-labile dissolved organic matter (DOM), which plays a pivotal role in global carbon cycling as glacial-fed streams are headwaters of numerous large rivers. To understand the complexity, origin, and fate of DOM in glaciers and downstream-linked streams and lakes, we elucidated the molecular composition of DOM in two different Tibetan Plateau glaciers, eight glacial-fed streams and five lakes, using an ultrahigh-resolution 15 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The compositional changes of the DOM samples revealed that glacier DOM mostly exhibited sulfur-containing organic compounds (CHOS species). We also found that aliphatic formulae contributed more than 50% of the total abundance of assigned molecules in glacier samples, and those compounds were significantly related to CHOS species. The CHO proportions of glacial-fed streams and lakes samples increased with increasing distance from glacial terminals. The relative contribution of terrestrial-derived organics (i.e., lignins and tannins) declined while microbial-originated organics (aliphatics) increased with increasing elevation. This suggested the gradual input of allochthonous materials from non-glacial environment and the degradation of microbe-derived compounds along lower elevations. Alpine glaciers are retreating as a result of climate change and they nourished numerous streams, rivers, and downstream-linked lakes. Therefore, the interpretations of the detailed molecular changes in glacier ice, glacial-fed streams, and alpine lakes on the Tibetan Plateau could provide broad insights for understanding the biogeochemical cycling of glacial DOM and assessing how the nature of DOM impacts fluvial ecosystems.

Advanced Analytical Techniques for Dissolved Organic Matter and Their Applications in Natural and Engineered Water Treatment Systems (최근 용존 유기물 분석 기법 및 자연환경과 수 처리 시스템 내 활용방안)

  • Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.31-42
    • /
    • 2022
  • Dissolved organic matter (DOM), which changes according to various factors, is ubiquitously present from natural environments to engineered treatment systems. Only limited information is available regarding the environmental functions of DOM after bulk analyses are only applied for characterization. In this paper, latest DOM analytical techniques are briefly introduced, which include fluorescence excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), size-exclusion chromatography with an organic carbon detector (SEC-OCD), carbon/nitrogen stable-isotope ratio, and Fourier transform-ion cyclotron resonance-mass spectroscopy (FT-ICR-MS). Recent examples of using advanced analyses to interpret the phenomena associated with DOM occurring in natural and engineered systems are presented here. Through EEM-PARAFAC, different components like protein-like, fulvic-like, and humic-like can be identified and tracked individually through the investigated systems. SEC-OCD allows researchers to quantify different size fractions. FT-ICR-MS provides thousands of molecular formulas present in bulk DOM samples. Lastly, carbon/nitrogen stable-isotope ratio offers reasonable tools for tracking the sources in environments. We also discuss the advantages and weakness of the above-mentioned characterizing tools. Specifically, they focus on single environmental factors (different sourced-DOM and interaction of sediment-pore water) or simple changes after individual treatment processes. Through collaboration with the advanced techniques later, they help the researchers to better understand environmental behaviors in aquatic systems and serve as essential tools for addressing various pending problems associated with DOM.

Prediction of Trihalomethanes Formation Potential of Dissolved Organic Matter with Various Sources Using Differential Fluorescence 3D-Excitation-Emission Matrix (EEM) (차등 3차원 형광 여기-방출 매트릭스를 이용한 다양한 기원의 용존 유기물질 트리할로메탄 생성능 예측)

  • Bae, Kyung Rok;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.63-71
    • /
    • 2022
  • This study aimed to maximize the potential of fluorescence 3D excitation-emission matrix (EEM) for predicting the trihalomethane formation potential (THMFP) of DOM with various sources. Fluorescence spectroscopy is a useful tool for characterizing dissolved organic matter (DOM). In this study, differential spectroscopy was applied to EEM for the prediction of THMFP, in which the difference between the EEM before and after chlorination was taken into account to obtain the differential EEM (DEEM). For characterization of the original EEM or the DEEM, the maximum intensities of several different fluorescence regions in EEM, fluorescence EEM regional integration (FRI), and humification index (HIX) were calculated and used for the surrogates for THMFP prediction. After chlorination, the fluorescence intensity decreased by 77% to 93%. In leaf-derived and effluent DOM, there was a significant decrease in the protein-like peak, while a more pronounced decrease was observed in the humic-like peak of river DOM. In general, leaf-derived and effluent DOM exhibited a relatively lower THMFP than the river DOM. Our results were consistent with the high correlations between humic-like fluorescence and THMFP previously reported. In this study, HIX (r= 0.815, p<0.001), FRI region V (r=0.727, p<0.001), humic-like peak (r= 0.827, p<0.001) from DEEM presented very high correlations with THMF P. When the humic-like peak intensity was converted to a logarithmic scale, a higher correlation was obtained (r= 0.928, p<0.001). This finding suggests that the humic-like peak in DEEM can serve as a universal predictor for THM formation of DOM with various origins.

Dissolved Organic Matter (DOM) Leaching from Microplastics under UV-Irradiation and Its Fluorescence P roperties: Comparison with Natural P articles (UV 광풍화에 의한 미세플라스틱 기원 유기물 용출과 형광 특성: 자연유래 유기성 입자와의 비교)

  • Choi, Na Eun;Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.72-81
    • /
    • 2022
  • Numerous studies have investigated the occurrence and fate of microplastics in the environment; however, only limited effort has been devoted to exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In microplastic (MP)-contaminated environment, MPs are typically mixed with naturally-occurring particles, which interferes with their detection in the environment. Thus, it is necessary to distinguish between the DOM leached from MPs and those leached from natural particles and also to characterize their properties. This study investigated DOM leaching behavior from MPs (polystyrene: PS, polyvinylchloride: PVC) and natural particulates (forest soil: FS, litter leaves: LL) under light, which is considered one of the main weathering processes that affect MPs in the environment. The leached DOM concentrations and fluorescence characteristics were compared under dark versus light conditions. Regardless of the origins, UV light promoted DOM release from all the particulates. More DOM was released from natural particles than from MPs under both conditions. However, the effect of promoting DOM release by UV was more pronounced for MPs than for natural particles. It was observed from fluorescence spectra that the intensity of the humic-like region was substantially reduced when MP-derived DOM was exposed to UV light, whereas the change of intensity was very little for natural particles. Under light conditions, the ratio of protein-like to humic-like fluorescence of MP-derived DOM was higher than that of DOM from natural particles. This study implies that a substantial amount of DOM could be leached from MPs even in MP-polluted environment under UV irradiation. Protein/humic fluorescence ratio could be utilized as a fast probing indicator to separate the two sources of particles under light.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.

Characteristics of Biodegradation of Organic Matters in the Nakdong River Watershed (낙동강 수계 내 유기물 시료에 따른 생분해 특성)

  • Kim, Jung Sun;Kang, Lim Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.605-611
    • /
    • 2014
  • This research was carried out to examine the concentration and fate of dissolved organic matter due to the increased detention time in middle and down stream of the Nakdong River. Aldo the characteristics of biodegradation of DOM were investigated according to the various water sources. The approaches used to characterize DOM biodegradability include the changes in DOC concentration and DOM fraction. Long-term biodegradation test for each organic source was also conducted. As the result, maximum 50% of DOC was reduced during the first 30 days of biodegradation tests. After 30 days, biodegradation of organic matter was continuously progressed, as showing continuous reduction of DOC. While DOC concentration was reduced, SUVA values for the organic matters were increased. Properties of dissolved organic matter by water sources also showed decreasing hydrophilic components while showing increased hydrophobic components. The more rapid reduction of the hydrophilic components than hydrophobic components might be due to the preferential degradation of the hydrophilic components by microorganisms during biodegradation process.

Study on the Characteristics of Dissolved Organic Matters from Diverse Sources by XAD Resin Fractiontion and Microbial Incubation Experiments (XAD 수지분획과 생분해 실험에 의한 기원별 용존유기물질 특성 연구)

  • Oh, Seijin;Choi, ChanKyu;Hur, Jin;Jung, Myung-Sook;Shin, Hyun-Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.976-985
    • /
    • 2010
  • In this study, characteristics of dissolved organic matter (DOM) from Lake Paldang and seven other DOM sources (lake plankton, plants, soil, composite, treated sewage) were studied using XAD resin fractionation and 28-day microbial incubation experiment. Distribution patterns of DOM-fractions, which include hydrophilic acids (HiA), hydrophilic bases (HiB), hydrophilic neutrals (HiN), hydrophobic acids (HoA), hydrophobic neutrals (HoN) and the extent of DOM biodegradation (i.e., biodegradability) were different depending on the origins of the DOM samples. The DOM distribution pattern and the biodegradability were found to be effective for distinguishing the different DOM sources. The biodegradability (%) had negative correlations with the content (%) of hydrophobic fractions (Ho) and specific UV absorbance of DOM, which indicate that the Ho fractions contain more aromatic carbon structures and relatively stable during biodegradation, irrespective of the sources. To gain additional insight into the microbial transformation of the DOM, we also investigated the changes in the fraction's distribution for plankton, leaf litter and composite samples after the incubation. The results showed that biodegradation of hydrophilic fraction (Hi) causes an increase in the proportion of Ho (HoA, HoN), while biodegradation of HoA increases the HoN production.

CHARACTERIZATION OF RECALCITRANT DISSOLVED ORGANIC MATTER IN LAKE AND INFLOW RIVER WATERS

  • Kim, Yong-Hwan;Lee, Shun-Hwa;Kim, Jung-Ho;Park, Jong-Woong;Choi, Kwang-Soon
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.181-193
    • /
    • 2006
  • The hydrophilic or hydrophobic characteristics of dissolved organic matter (DOM) from different origins in lake and river waters were investigated using spectrometric and chromatographic analyses of water samples. DOM in a deep, mesotrophic lake (Lake Unmun) was fractionated using three types of ion exchange resins and classified into aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), hydrophilic neutrals (HiN), and bases (BaS). The DOM fractionation provided insight into the understanding of the nature of heterogeneous DOM molecules present in different water sources. The UV/DOC ratios were determined for samples from the influent river and lake waters during DOM fractionation and incubation. AHS prevailed over DOM in the lake and river waters. After biodegradation, the relative contribution of AHS in the total DOM became more significant. It indicates that the AHS fraction would increase while water stay long time in the lake.