• Title/Summary/Keyword: Dissolved heavy metal

Search Result 108, Processing Time 0.031 seconds

Development of Controlling and Analyzing Software for Portable Atomic Emission Spectrometry (휴대용 원자 방출 분광계를 위한 제어 및 분석용 소프트웨어 개발)

  • Lee, Sang Chun;Lee, Chang-Soo;Jung, Min-Soo;Ryu, Dong-Hang
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • This study focuses on developing a controlling and analyzing software for the portable atomic emission spectrometer equipped with an electrothermal vaporizer(ETV) that can perform the in-situ trace analysis of heavy metal ions dissolved in water. The software works well for a notebook PC and it is exclusively developed for the real time analysis with a line filter and a photomultiplier light detector. The program is designed to operate under Windows 95 environment and either Korean or English can be used as a main language. The Delphi 2.0 language software is mainly used for programing. The program is designed to make a calibration curve and the system users can get the analytical data in a short time. And a final report can be generated without having difficulties. This software can be easily modified for other analytical atomic spectrometers.

  • PDF

Assessment of Soil Contamination and Hydrogeochemistry for Drinking Water Sites in Korea (국내 먹는샘물 개발지역의 토양 오염 평가 및 수리지구화학적 특성)

  • 이두호;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.41-53
    • /
    • 1997
  • Geochemical data of soil and water samples were presented in order to assess the environmental impart for drinking water sites. Microscopic observation of rock samples and physical and chemical analysis of soil and water samples were undertaken. The geology of study areas are classified into three groups such as granitic rocks, meta-sedimentary rocks and sedimentary rocks. Enrichment of heavy metals derived from those rocks is not found in this study areas. Soils were analyzed for Cu, Pb, Zn, Cd and Cr using AAS extracted by HNO$_3$+HClO$_4$ and 0.1 N HCl. Heavy metal concentrations in soils are within the range of those in uncontaminated soils. In comparison of metal contents extracted by 0.1 N HCl and HNO$_3$+HC1O$_4$, less than 10% of the heavy metals are present in the exchangeable fraction. In particular, an pollution index has been proposed to assess the degree of soil contamination. Pollution index in soils are between 0.03 and 0.47 therefore, soils are not polluted with heavy metals. Deep groundwaters within granitic rocks have been evolved into Na$\^$+/-HCO$_3$$\^$-/ type, whereas other deep groundwaters evolved into Ca$\^$2+/-HCO$_3$$\^$-/ type. The predominance of Na$\^$+/ over Ca$\^$2+/ in deep groundwaters within granitic rocks is a result of dissolution of plagioclase, but for sedimentary and meta-sedimentary rocks, dissolution of calcite is a dominant factor for their hydrogeochemistry. The pH, conductivity and contents of the most dissolved ions in the water increase with depth. Shallow groundwaters, however, are highly susceptible to pollution owing to agricultural activities, considering the fact that high contents of nitrate, chloride and potassium, and high K/Na ratio are observed in some shallow groundwaters. In a thermodynamic approach, most natural water samples are plotted within the stability fields of kaolinite and smectite. Therefore, microcline and other feldspars will alter to form clay minerals, such as kaolinite and smectite. From the modelling for water-rock interactions based on mass balance equation, models accord well with behavior of the ions and results of thermodynamic studies are derived.

  • PDF

The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction (광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향)

  • Kang Min-Ju;Lee Pyeong-Koo;Kim Sang-Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.23-36
    • /
    • 2006
  • Experimental leaching of tailings was performed as a function of times (1, 2, 4, 7, 14, 21 and 30 days) in the laboratory using reaction solutions equilibrated to three different pH set-points (pHs 1,3 and 5). The initial pHs of 5 and 3 stabilized at either 4.6-6.1 or 2.8-3.5 in 2 days and decrease gradually with time afterwards. The results of the leaching tests indicate that the significant increase in the sulfate concentrations and in acidity after 7 days of leaching results from the oxidation of sulfide minerals. There were no significant variations in the extractable Pb found in the leach solutions of pH 5 and 3 within the reaction time (1-30 days), while Zn, Cd and Cu concentrations tend to significantly increase with time. In tailings leaching at an initial pH=1, two trends were observed: i) The 'Zn-type' (Zn, Cd and Cu), with increasing concentrations between days 1 and 30, corresponding to the expected trend when continuous dissolution is the dominant process, ii) the 'Pb-type' (Pb), with decreasing concentrations over time, suggesting rapid dissolution of a Pb source followed by the precipitation of 'anglesite' in relation to the large increase in dissolved sulfates. The high sulfate concentrations were coupled with high concentrations of released Fe, Zn and Cd. Release of Zn and Cd and acidity from these leaching experiments can potentially pose adverse impact to surface and groundwater qualities in the surrounding environment. The kinetic problems could be the important factor which leads to increasing concentrations of trace metals in the runoff water.

Bioaccumulation of Pb and Cd in Blue Mussel (Mytilus edulis) and Oliver Flounder (Paralichthys olivaceus) Exposed to Rearing Media (노출실험을 통한 진주담치(Mytilus edulis) 넙치(Paralichthys olivaceus)의 Pb 및 Cd 축적에 관한 연구)

  • Cho, Yeong-Gil;Kim, Gi-Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The bioaccumulation of Pb and Cd dissolved in seawater was assessed measuring the concentrations recorded within blue mussel (Mytilus edulis) and oliver flounder (Paralichthys olivaceus) after two weeks exposure period. The Pb and Cd concentration within the whole body of two testing organisms increased according to the exposure concentrations, and the such tendency was clear specially from the mussel. Maximum metal concentration reached $5,260({\pm}70)\;{\mu}g/g$ for Pb reared under 5.0 mg/L Pb, $1,040({\pm}40)\;{\mu}g/g$ for Cd reared under 1.0 mg/L Cd in the mussel, and indicated that the bioaccumulation of Pb and Cd was directly related to the rearing medium concentrations. Bioconcentration factors (BCF) reached very high values for Pb (maximum value: $12,100{\pm}1,400$) in the mussel reared under lowest Pb concentration (0.01 mg/L). The BCF value for Cd in the mussel were also far higher at exposure to low Cd concentration than high Cd concentration. At higher external concentrations, the BCF for Cd and Pb declined. This demonstrated the ability of two testing organisms to rapidly uptake heavy metals particularly when exposed to low external concentration. The mean Pb concentration was slightly higher in the gill of mussel than in the digestive gland, while Cd showed a higher level in the digestive gland than in the gill.

  • PDF

Characteristics of Coastal Water Quality after Diatom Blooms Due to Freshwater Inflow (담수유입에 의한 식물플랑크톤의 대량번식 후의 연안 수질변동 특성)

  • Lee Young-Sik;Park Young-Tae;Kim Kui-Young;Choi Yong-Kyu;Lee Pil-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.2 s.25
    • /
    • pp.75-79
    • /
    • 2006
  • In order to study the characteristics of water quality in coastal water and mechanism of phytoplankton blooms, factors of water quality were investigated in diatom bloom area due to rainfall event and no diatom bloom area Diatom blooms occurred after heavy rain and the dominant species were Skeletonema costatum($1,200{\sim}5,000cells/mL$) and Thalassiosira spp.($750{\sim}1,200cells/mL$). In diatom bloom area, water temperature, pH, and dissolved oxygen were observed at higher level than in no diatom bloom area Although these two areas were only 20 meters apart from each other, sharp difference in coastal water quality between two areas was observed. In diatom bloom area, concentrations of nitrogen, phosphorus, and silicate were observed at lower level than in no diatom blooms area. This seems to be due to inflow of much trace metal such as Fe, Mo, Se and so on than nitrogen, phosphorus, and silicate by rainfall events. However, distinct differences in DIN/DIP and $DIN/SiO_2-Si$ between these two areas were not observed.

  • PDF

Effects of Various Proteins on the Autoxidation of L-Ascorbic Acid (비타민 C 산화반응에 대한 단백질의 공존효과)

  • Kim Mi-Ok;Jang Sang-Moon
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.3
    • /
    • pp.294-301
    • /
    • 2004
  • Effects of superoxide dismutase(SOD), catalase(CAT), and such other proteins as bovine serum albumin(BSA), ovalbumin, lysozyme, and v-globulin on the autoxidation rates of L-ascorbic acid(AsA) in the absence of heavy metal ions and in the presence of Fe(III) or Cu(II) ions in water were examined. AsA was dissolved in a ultra-refined water at a concentration of 50 ${\mu}$M and 5 ${\mu}$M Fe(III) or 0.1 ${\mu}$M Cu(II) were added, and a oxygen gas was bubbled through the solution at a flow rate of 200 ml/min at 35$^{\circ}C$. The amount of remaining AsA in the reaction mixture was determined by using a UV spectrophotometer(at 265 nm). It was found that the Cu(II) at a concentration of 0.1 ${\mu}$M had a more accelerated for the autoxidation of AsA than Fe(III) at 5 ${\mu}$M. Moreover, it was confirmed that the ratio of remaining AsA was significantly larger in the presence of SOD, CAT, BSA, ovalbumin, lysozyme, and v-globulin than in the absence of proteins. The stabilization of AsA by various proteins were confirmed during the autoxidation of AsA in the presence of Fe(III) or Cu(II) in water. It was suggested that the non-enzymatic effects of SOD, CAT and some other proteins might be involves in the stabilization of AsA.

Studies on Solvent Extraction and Analytical Application of Metal-dithizone Complexes(I). Separation and Determination of Trace Heavy Metals in Urine (Dithizone 금속착물의 용매추출 및 분석적 응용(제1보). 뇨중 흔적량 중금속 원소의 분리 정량)

  • Jeon, Moon-Kyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.336-344
    • /
    • 1996
  • The extraction of trace cobalt, copper, nickel, cadmium, lead and zinc in urine samples of organic and alkali metal matrix into chloroform by the complex with a dithizone was studied for graphite furnace AAS determination. Various experimental conditions such as the pretreatment of urine, the pH of sample solution, and dithizone concentration in a solvent were optimized for the effective extraction, and some essential conditions were also studied for the back-extraction and digestion as well. All organic materials in 100 mL urine were destructed by the digestion with conc. $HNO_3$ 30 mL and 30% $H_2O_2$ 50 mL. Here, $H_2O_2$ was added dropwise with each 5.0 mL, serially. Analytes were extracted into 15.0 mL chloroform of 0.1% dithizone from the digested urine at pH 8.0 by shaking for 90 minutes. The pH was adjusted with a commercial buffer solution. Among analytes, cadmium, lead and zinc were back-extracted to 10.00 mL of 0.2 M $HNO_3$ from the solvent for the determination, and after the organic solvent was evaporated, others were dissolved with $HNO_3-H_2O_2$ and diluted to 10.00 mL with a deionized water. Synthetic digested urines were used to obtain optimum conditions and to plot calibration-eurves. Average recoveries of 77 to 109% for each element were obtained in sample solutions in which given amounts of analytes were added, and detection limits were Cd 0.09, Pb 0.59, Zn 0.18, Co 0.24, Cu 1.3 and Ni 1.7 ng/mL, respectively. It was concluded that this method could be applied for the determination of heavy elements in urine samples without any interferences of organic materials and major alkaline elements.

  • PDF

Assessment of Water Pollution by Discharge of Abandoned Mines (휴폐광산 지역에서 유출되는 하천수의 오염도 평가)

  • Kim Hee-Joung;Yang Jay-E.;Ok Yong-Sik;Lee Jai-Young;Park Byung-Kil;Kong Sung-Ho;Jun Sang-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.5
    • /
    • pp.25-36
    • /
    • 2005
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy. Thus these disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. Acid mine drainage (AMD) and waste water effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of Total Dissolved Solids (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. Concentrations of water soluble heavy metals in the Okdong streams were in the orders of Fe>Al>Mn>Zn>Cu>Pb>Cd, indicating Fe from the AMD and waste water effluents contributed greatly to the quality of water and soil in the lower watershed of Okdong stream. Copper concentrations in the effluents from the tile drainage of mine tailings dams were highest during the raining season. Water Pollution Index (WPI) of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailings dams and coal mines flowed into main stream were in the WPI ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9. These results indicated that mining wastes such as AMD and effluents from the closed mines were the major source to water pollution at the Okdong stream areas.

The effect of geochemical characteristics and environmental factors on the growth of cultured Arkshell Scapharca broughtonii at several shellfish-farming bays on the South coast of Korea (남해 연안 피조개 (Scapharca broughtonii) 양식장의 환경특성)

  • Choi, Yoon Seok;Jung, Choon-Goo
    • The Korean Journal of Malacology
    • /
    • v.32 no.3
    • /
    • pp.149-155
    • /
    • 2016
  • To assess the effects of environmental factors on the sustainability of cultured ark shell Scapharca broughtonii production, we investigated the habitat characteristics of shellfish-farming bays (Gangjin Bay, Yeoja Bay, Keoje Bay and Deukryang Bay). We measured the physiochemical parameters (temperature, salinity, dissolved oxygen, nutrients, chemical oxygen demand and Chlorophyll a) and the geochemical characteristics (chemical oxygen demand, ignition loss, C/N ratio and C/S ratio). Surface sediments were collected from several shellfish-farming bays to examine the geochemical characteristics of both the benthic environment and heavy metal pollution. The grain sizes for Gangjin Bay, Yeoja Bay and Keoje Bay were similar, at the ratio of silt and clay in comparison with Deukryang bay of it. The C/N ratio was more than 5.9, reflecting the range arising from the mix of marine organisms and organic matter. The C/S ratio (more than 4.2) showed that the survey area had anoxic or sub-anoxic bottom conditions. The index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. We suggested that the growth of ark shell Scapharca broughtonii in the shellfish-farming bay was effected by the various environmental conditions.

Physicochemical Heterogeneity of the Supply Water Quality depending on Seasonal Changes in the Taejon Area, Korea (대전지역 상수도 물의 계절변화에 따른 물리화학적 불균질)

  • 이현구;이찬희;서호택
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.505-517
    • /
    • 2000
  • This study was undertaken to provide a drinking water quality on the basis of physicochemical properties. In this study, the 25 samples of supply waters of the Taejon area were sampled twice (February and August in 1999). Hydrochemistry of the supply water belongs to the $Ca^{2+}$-${HCO_3}^{-1}$ type, whereas the supply water was characterized by the relatively significant enrichment of ${Ca}^{2+}$, ${Na}^{2+}$, ${K}^{2+}$, ${Cl}^{2+}$ ions and heavy metals compared to the original water from the Daecheong lake. Generally, the supply water has a mean values for $10.7^{\circ}C$ of temperature, 6.86 of pH, -12 mV of Eh, 88 ${\mu}S$/cm of EC and 70.379 mg/l of TDS in February, whereas the waters of the same sites in August are a slightly high temperature ($26.1^{\circ}C$), TDS (78.069 mg/l) and extremely high EC (442 ${\mu}S$/cm) value. These values are similar with physicochemical properties of the original lake water depending on the seasonal differences. Results of speciation calculation indicate that potentially toxic ions might exist mainly in the forms of free metal (${Cu}^{2+}$ or ${Zn}^{2+}$) and a small amount of ${CO_3}^{2-}$and ${OH}^{-}$in the supply water. The water seemed to be in equilibrium with kaolinite field of the normal stability diagrams for the natural water. Based on enrichment parameter of the supply water normalized by original lake water composition, the average value of those parameter can be calculated with nearly 1.00, but the those values for Cu+Zn possible source of decrepit pipe lines are 126.75 in February and 115.63 in August samples. The parameter values varied with sampling sites, however, do not exceed by chemistry of drinking water standard. Solid compounds remained on the membrane filter papers after filtration are adhered to pale yellow or yellowish brown colored dissolved solids and precipitates, which are coated by 0.02 to 0.35 mm thick per 500 ml with colloidal particles of about 1 to 2${\mu}m$ size. The particles are mainly Fe-Cu-Zn compounds and partly detected to Mn and Pb.

  • PDF