• Title/Summary/Keyword: Dissolved Oxygen (DO) Control

Search Result 98, Processing Time 0.031 seconds

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Effect of Ozone and Anion Treatment for Livestock Drinking Water (오존$\cdot$음이온을 이용한 가축음용수 처리효과)

  • Choi H. C.;Lee D. S.;Kang H. S.;Kwon D. J.;Yoo Y. H.;Yeon K. Y.;Song J. I.;Yang C. B.;Kim Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.2
    • /
    • pp.87-92
    • /
    • 2004
  • This research was carried out to investigate the effects of ozone and anion treatments in improving the quality of the drinking water far livestock. The drinking water was treated with an ozone concentration of 0.658 $\~$0.722 g/h and with anion of 3.27 $\~$ 6.17$\times$1,000,000 pieces/sec. With the ozone and anion treatments, the pH was significantly increased from a range of pH 6.38 $\~$ 7.14 to a range of pH 7.5 $\~$ 7.8(P<0.05). Also, with the ozone and anion treatments, the dissolved oxygen (DO) concentration in the drinking water was increased from a range of 2.0 $\~$ 3.5 mg/$\iota$ to 5.5 $\~$ 6.1 mg/$\iota$(P<0.05): the DO decreased in the control. The dissolved ozone was not increased in the beginning of the experiment, but was increased by 0.48$\~$0.56 mg/L after 48 h of the ozone and anion treatment. The colony numbers of Staphylococcus aureus, Salmonella enteritis, and Escherichia coli disappeared after one hour of ozone and anion treatment.

  • PDF

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.

Characteristics and Control of Microthrix Parvicella Bulking in Biological Nutrient Removal Plant (생물학적 영양소제거공정에서 Microthrix Parvicella에 의한 Bulking 특성 및 제어)

  • Lee, H.;Ahn, K.
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1101-1106
    • /
    • 2006
  • Many BNR (Biological Nutrient Removal) plants have experienced a bulking problem, mainly due to the growth of filamentous organisms, particularly during the winter months. This study investigated the problem of bulking due to the growth of M. parvicella both at a full-scale municipal wastewater treatment plant and a pilot scale plant located in the C city. The full-scale facility was operated at a flow rate of $51,000m^3/d$, an F/M (Food-to-Microorganism) ratio of 0.12 kgBOD/kgMLVSS/d and an SRT (Solids Retention Time) higher than 25 days, respectively. This plant experienced bulking and foaming problems at low temperatures below $15^{\circ}C$ since it was retrofitted with the BNR system in 2003. The pilot plant employed had an identical process configuration as the full scale one and used the same wastewater source. It was operated at a flow rate of $3.8m^3/d$, temperatures between 10 to $25^{\circ}C$ and SRTs between 10 and 25 days. At full scale, the M. parvicella growth and SVI (Sludge Volume Index) patterns were studied in conjunction with temperature variations. At pilot scale, DO and SRT variations were also explored, in addition to the filamentous bacteria growth and SVI patterns. During the full-scale investigation, over a 3 year period, it was noted that the SVI was maintained within acceptable operational values (i.e. under 160) during the summer months. Moreover settling in the secondary clarifiers was good and was not affected by the presence of M. parvicella. In contrast, at low mean temperatures during winter, the SVI increased to over 300. Overall, as the temperature decreased, the predominance of M. parvicella became apparent. According to this study, M. parvicella growth could be controlled and SVI could drop under 160 by a change in operational conditions which involved an increase in DO concentration between 2 and 4 mg/L and a decrease in SRT to less than 20 days.

Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern of Jeonnam (전남 해안 LPG 저장공동 유출수와 주변 지하수의 수질특성)

  • Lee, Jin-Yong;Choi, Mi-Jung;Kim, Hyun-Jung;Cho, Byung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.33-44
    • /
    • 2009
  • Water curtain of an underground LPG storage cavern is a facility to prevent leakage of high pressure gases, for which groundwater should flow freely towards the cavern and groundwater level also must be stably maintained. In this study, in order to evaluate qualities of seepage water and surrounding groundwater of an underground LPG storage cavern in Yeosu, 4 rounds of samplings, field measurements and laboratory analyses (February, May, August, October of 2007) were conducted. According to field measurements, pH was weak acidic to neutral but it gradually increased with time. Electrical conductivity (EC) of groundwater near a salt stack showed very high values between 10.47 and 38.50 mS/cm. Dissolved oxygen (DO) showed a very wide range of 0.20~8.74 mg/L and a mean of oxidation-reduction potential (ORP) was 159 mV, which indicated an oxidized condition. Levels of $Fe^{2+}$ and $Mn^{2+}$ were mostly less than 3 mg/L. All of seepage waters showed a Na-Cl type while only groundwater near the salt stack showed a Na-Cl type with a high total dissolved solid. The other groundwaters exhibited typical $Ca-HCO_3$ types. Levels of aerobic bacteria were mostly very high (573-39,520 CFU/mL). Based on the analyses of these hydrochemistry and biological characteristics, it is concluded that there are no particular problems in groundwater and seepage water, which not causing a trouble in the cavern operation. However, both for control of bio-clogging and for sustainable operation of the water curtain system, a regular hydrochemical and microbiological monitoring is required for the seepage water and surrounding groundwater.

Study on Exfoliation and Recovery of Anesthetized Yound Abalones, Haliotis discus hannai Treated with Ethy-p-aminobenzoate and Freshwater in Different Temperatures of Sea water (온도구간별 파라아미노안식향산에틸과 담수에 의한 양식산 참전복 (Haliotis discus hannai) 치패의 박리 및 마취회복에 관한 연구)

  • 최상덕;정성채;김호진;공용근;백재민;최규정
    • Journal of Aquaculture
    • /
    • v.10 no.3
    • /
    • pp.281-288
    • /
    • 1997
  • We investigated the optimal concentratin of ethyl-p-aminobenzoate for the exfoliation and recovery of young abalone, Haliotis discus hannai in according to different water temperatures, for the purpose of preventing the damage of shell and muscle to ecfoliated from shelter. In the 14$^{\circ}C$ water temperature, young abalones were exfoliated after 16, 35, 35 and 35 minutes in 150, 100, 75 and 50ppm concentration of ethyl-p-aminobenzoate, and were recovered after 100, 60, 30 and 30 minutes, respectively. Exfoliation rate of abalone were 100% except for 50 ppm (80%) and recovery rate were 100% of all concentration. In the $18^{\circ}C$ water temperature, young abalones were exfoliated after 4, 4, 6, 8, 8 and 12 munutes in 300, 200, 150, 100, 75 and 50ppm concentration of ethyl-p-aminobenzoate, and were recovered after 210, 180, 90, 60, 30, 20 and 20 minutes, respectively. Exfoliation rate of abalone were 100%, and recovery rate were 100% except for 200 and 300ppm (90%). In the $24^{\circ}C$ water temperature, young abalones were exfoliated after 8, 10, 10 and 12 minutes in 150, 100, 75 and 50ppm concentration of ethyl-p-aminobenzoate, and were recovered after 70, 50, 30 and 20 minutes, respectively. Exfoliation and recovery rate of abalone were 100%. In the 18$^{\circ}C$water temperature, exfoliation rate that treated with freshwater during 20 minute were 80, 50, 30 and 5% in 100, 75, 50 and 25% of fresh water, and recovery after 60, 15, 10 and 2 minutes, respectively and recovery arate were 100% except of r 100% freshwater. In this study, we suggest the reslults that the exfoliation and recovery by ethly-p-aminobenzoate were more effected in $18^{\circ}C\;and\;24^{\circ}C$ of sea water temperature than those of $14^{\circ}C$. The optimal concentration of ethyl-p-aminobenzoate was 50ppm at those water temperature. We raised 20 individual of young abalones at water temperature of $16^{\circ}C$ in the 1$\ell$ o ftnk and checked the variatin of dissolved oxygen (DO) by respiration of abalones that treated with 75ppm of ethyl-p-aminobenzoate. Before anesthetizion, DO were 6.17~6.20mg/$\ell$ and slowly decreased. But after 60 minutes, DO decreasing were stopped in 5.42~5.46mg/$\ell$. On the other hand, the control was continuously decreased and 5.27mg/$\ell$ after 60 minutes. The heartbeats of abalones were 33~45/minute in the water temperature of $18^{\circ}C$, but that treated with 100 ppm concentration of ethyl-p-aminobenzoate during 60 minutes, was 0/minute. And heartbeats of recovered abalones from anesthetizion were 29~43/minute.

  • PDF

Effect of a Freshwater Bivalve (Unio douglasiae) and a Submerged Plant (Potamogeton crispus) on the Growth Inhibition of a Cyanobacterium Oscillatoria sp. (담수패류(Unio douglasiae)와 침수식물(Potamogeton crispus)의 유해 남조 Oscillatoria sp. 성장억제 효과)

  • Kim, Keun-Hee;Kim, Baik-Ho;Park, Myung-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.68-76
    • /
    • 2008
  • This study examined the inhibition effects of a freshwater bivalve (Unio douglasiae) and a submerged plant (Potamogeton crispus) on the cyanobacterial bloom (Oscillatoria sp.). The experiment were conducted in aquarium $(50cm{\times}65cm{\times}120cm)$ with lake sediments in the bottom of the aquarium in 10 cm thick. Before the experiments, artificial cyanobacterial bloom was induced with the addition of lake sediment and CB medium. Total 12 transparent acrylic cylinders (${\Phi}19cm$, height 40 cm) were placed in the aquarium, and within which bivalves and plants were placed in various conditions such as the control (C), plant addition (P:5 stems), mussel addition (U:2 individuals), and both mussel and plant addition (PU: the same quantity as used in each treatment). The experiment was conducted in triplicate during 7 days. pH, dissolved oxygen (DO), electric conductivity (EC), salinity, cyanobacterial cell density, chlorophyll-${\alpha}$ concentration, and mussel filtering rate were monitored daily. At the end of the experiment, total phosphorus (TP), total nitrogen (TN), and plant height and weight were measured. Overall, a large degree of cyanobacterial growth inhibition appeared in both P and U treatments, and the effect was highest in the U treatment, followed by P and PU. The combined treatment of both U and P did not show any synergic effects compared to the effect in separated treatment. In all enclosures of the treatments chlorophyll-${alpha}$ (Chl-${alpha}$) concentration decreased until 36 hours after the additions of the plants and mussels. In contrast, Chl-${alpha}$ concentrations increased in PU enclosures after 36 hours. The same trend was shown in the cell density of Oscillatoria. pH and DO gradually decreased until 120 and 144 hours, respectively, in the P and PU enclosures. TP concentration increased in the mussel enclosures (U and PU), while TN concentration largely decreased in the plant enclosures (P and PU). Our results suggest that applied bivalve (Unio) and submerged plant (Potamogeton) seemed to have a potential effect on the growth inhibition of cyanobacteria, but their combined application may have an antagonistic effect to diminish the degree of the inhibition.

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.