• Title/Summary/Keyword: Dissolved Organic Nitrogen

Search Result 158, Processing Time 0.023 seconds

Influence of Landuse Pattern and Seasonal Precipitation on the Long-term Physico-chemical Water Quality in Namhan River Watershed (남한강 수계에서 장기 이화학적 수질특성에 대한 토지이용도 및 계절성 강우의 영향)

  • Lee, Ji-Eun;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.21 no.9
    • /
    • pp.1115-1129
    • /
    • 2012
  • The objective of this study was to analyze long-term annual and seasonal trends of water chemistry on landuse patterns and seasonal precipitation using 72 sampling sites within Namhan River watershed during 2001-2010. Water quality, based on multi-parameters of water temperature(WT), dissolved oxygen(DO), biochemical oxygen demand(BOD), chemical oxygen demand(COD), suspended solids(SS), total nitrogen(TN), total phosphorus(TP), and electric conductivity(EC) varied largely depending on monsoon rain and landuse patterns such as forest, cropland, and residence. Concentrations of BOD and COD as an indicator for organic matter pollution, increased during summer monsoon season at the cropland and residential streams. Values of TN and TP were higher in residential streams than in the forest and cropland streams. In the meantime, DO values had weak relations to the landuse patterns of forest and cropland cover. Water quality was worst in cropland and residential streams, and also most degradated in 4th order streams. Overall, our results suggest that efficient water quality management is required in the cropland and residential landuse streams.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

Analysis Temporal and Spatial Changes of Water Quality in Domestic Hydropower Dam Reservoirs (국내 수력발전댐 저수지 수질의 시공간 변화 분석)

  • Park, Kyoung-deok;Kang, Dong-hwan;Jo, Won Gi;Yang, Minjune
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.373-388
    • /
    • 2022
  • This study analyzed the temporal and spatial characteristics of water quality for five hydropower dam reservoirs in South Korea. Water temperature, pH, dissolved oxygen, and chlorophyll-a (Chl-a) showed high fluctuations in summer and autumn at all reservoirs, indicating the existence of seasonal effects. At all five reservoirs, the concentrations of suspended solids (SS) and total nitrogen (TN) fell under the "slightly bad" category and those of total organic carbon (TOC) fell under the "slightly good" category or higher, according to "the standard for living environment of lake water quality." Variations in the concentration ranges and degrees of change in SS, TN, and TOC among reservoirs were observed, indicating the influences of rainfall, surrounding environments, and seasonal changes. Daecheong and Namgang Dam showed high Chl-a concentrations in summer, indicating that the metabolism of microbial communities, such as algae, was active.

Seasonal Variations of Sediment Oxygen Demand and Denitrification in Kanghwa Tidal Flat Sediments (강화도 갯벌 퇴적물의 산소요구량과 탈질소화의 계절 변화)

  • An, Soon-Mo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Seasonal variations of remineralization and inorganic nitrogen removal capacity were measured from Dec. 2001 to Apr. 2004 in a tidal flat located in south-western pan of Gwanghwa island, Korea by measuring the sediment oxygen demand (SOD) and denitrification. SOD was higher in muddy sediment (Dong-Mak; three year average=$683;m^{-2}d^{-1}$) than sandy sediment(Yeocha; three year average=$457;m^{-2}d^{-1}$). The SOD was high in summer and tended to be lower in winter. During the sediment incubation in Apr. 2002, production of oxygen from sediment was observed implying active benthic photosynthesis. Denitrification was also higher in muddy sediment (Dong-Mak: $5.4;m^{-2}d^{-1}$) than sandy sediment (Yeocha; $3.4;m^{-2}d^{-1}$). The denitrification rate corresponds to the carbon remineralization rate of 9.3 and $5.9\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively. The denitrification rates were lower compared to rates observed in other coastal area $(0{\sim}200\;{\mu}mole\;m^{-2}h^{-1})$. Although Kwanghwa tidal flat sediments are replete in organic matter, remineralization activity seems to be limited by the availability of labile organic matter. The Kwangwha tidal flat may have potential to effectively remove large load of organic matter. Net remineralization rates were 196 and $132\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively.

Simultaneous nitrification and denitrification by using ejector type microbubble generator in a single reactor

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.251-257
    • /
    • 2020
  • This study was performed to verify the possibility of nitrification and denitrification in a single reactor. In batch type experiment, optimal point of experimental conditions could be found by performing the experiments. When supply location of microbubbles was located at half of width of the aeration tank and operating pressure of 0.5 bar, it was possible for zones in the aeration tank to be separated into anoxic and aerobic by controlling air suction rate according to operating pressure of the generator. To be specific, the concentration of dissolved oxygen (DO) in zone 1 and 2 of the aeration tank could be maintained as less than 0.5 mg/L. Also, in the case of concentration of oxygen in zone 3 and 4, the concentration of DO was increased up to 1.7 mg/L due to effects of microbubbles. In continuous flow type experiment based on the results of batch type experiments, the removal efficiency of nitrogen based on T-N was observed as 39.83% at operating pressure of 0.5 bar and 46.51% at operating pressure of 1 bar so it was able to know that sufficient air suction rate should be required for nitrification. Also, denitrification process could be achieved in a single reactor by using ejector type microbubble generator and organic matter and suspended solid could be removed. Therefore, it was possible to verify that zones could be separated into anoxic and aerobic and nitrification and denitrification process could be performed in a single reactor.

Recovery of Ammonium Nitrogen and Phosphate from the Piggery Wastewater as Struvite and Its Assessment for the Reduction of Water Pollution Through the Field Test

  • Daeik Kim;Sun Jin Hwang;Su Ho Bae;Keon Sang Ryoo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.83-92
    • /
    • 2023
  • Excess N and P from the livestock manure applied to farmlands, have entered the water systems and poses a serious threat to the natural environment. Consequently, there has been recent awareness towards the management of livestock manure and its related fields. In this study, piggery wastewater was collected from a piggery in Pohang city, Korea. At 800℃, thermal decomposition of a natural stone, magnesite (MgCO3), yielded powered MgO with particle sizes ranging between 10 to 100 ㎛. Furthermore, NH4+-N and PO43--P were recovered as struvite precipitates from the piggery wastewater, by adjusting the pH with MgO and H3PO4. At pH 10, the recovery efficiencies of NH4+-N and PO43--P were found to be 86.1% and 94.1%, respectively. Using an X-ray Diffractometer (XRD), the struvite in the precipitate was confirmed to be consistent with standard pure struvite. Further, the purity of the struvite precipitate was analyzed using an energy dispersive X-ray (EDX) and thermal gravimetry-differential thermal analysis (TG-DTA), and found to be between 79.2% and 93.0%. Additionally, struvite-containing piggery wastewater and sawdust were mixed in a weight ratio of 2.5:1 and processed into a mature compost. The newly manufactured compost passed all quality standards required for first-class graded livestock composts. Moreover, this compost was sprayed directly onto the soil at the test site, and various parameters of the soil's effluent, such as total organic carbon (TOC), total nitrogen (T-N), total phosphorus (T-P), and dissolved oxygen (DO), were analyzed and measured. Based on these results, it is determined that the newly manufactured compost can more significantly reduce water pollution than commercial compost.

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

A Study on the Removal of Chloro-Phenols by Photocatalytic Oxidation (광촉매(光觸媒) 산화(酸化) 반응(反應)을 이용한 클로로페놀 분해(分解)에 관한 연구(硏究))

  • Lee, Sang Hyup;Park, Ju Seok;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.87-96
    • /
    • 1995
  • The Electron/Hole Pair is generated when the activation energy produced by ultraviolet ray illuminates to the semiconductor and OH- ion produced by water photocleavage reacts with positive Hole. As a results, OH radical acting as strong oxidant is generated and then Photocatalytic oxidation reaction occurs. The photocatalytic oxidation can oxidate the non-degradable and hazardous organic substances such as pesticides and aromatic materials easier, safer and shorter than conventional water treatment process. So in this study, many factors influencing the oxidation of chlorophenols, such as inorganic electrolytes addition, change of oxygen and nitrogen atmosphere, temperature, pH, oxygen concentration, chlorophenol concentration, were throughly examined. According to the experiments observations, it is founded that the rate of chlorophenol oxidation follows a first-order reaction and the modified Langmuir-Hinshelwood relationship. And the photocatalytic oxidation occurs only when activation energy acting as Electron/Hole generation, oxygen acting as electron acceptor to prevent Electron/Hole recombination, $TiO_2$ powder acting as photocatalyst are present. The effects of variation of dissolved oxygen concentration, temperature and inorganic electrolytes concentration on 2-chlorophenol oxidation are negligible. And the lower the organic concentration, the higher the oxidation efficiency becomes. Therefore, the photocatalytic oxidation is much effective to oxidation of hazardous substances at very low concentration. The oxidation is effective in the range of 0.1 g/L-10 g/L of $TiO_2$. Finally when the ultra-violet ray is illuminated to $TiO_2$, the surface characteristics of $TiO_2$ change and Adsorption/Desorption reaction on $TiO_2$ surface occurs.

  • PDF

The Parameter Estimation of WASP Model for Water Quality Prediction (수질예측을 위한 WASP7 모형 매개변수의 추정)

  • Ahn, Seung-Seop;Seo, Myung-Joon;Park, Ro-Sam;Jeong, Khang-Ok
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.623-632
    • /
    • 2007
  • The objective of this study is analysis of Andong-Dam lake water quality with water quality model. Model parameters of the WASP applied to Lake Andong-Dam were estimated. The methodology is based on grouping water quality constituents and relevant parameters and successively estimating parameters by a trial-and-error procedure. Water qualify system for modeling consisted of BOD, DO, T-N, T-P. The results of water quality modelling using WASP. T-N was maximum affected by K71C(Organic nitrogen mineralization rate) parameter. T-P was maximum affected by K83C(Dissolved organic phosphorus mineralization) parameter, and It did not show a difference almost from the parameter of others and it omitted. BOD was maximum affected by Temperature parameter, it was visible of the reaction due to the KDC(Deoxygenation rate) in afterwords, and it did not show a difference from the parameter of others and it omitted. DO was maximum affect by Temperature parameter, and It did not show a difference almost from the parameter of others and it omitted. The parameter which it presumes from the this study uses a water quality modeling and Actual value and the result with which it compares, error rate the parameter presumption which is appropriate with 1% interior and exterior is investigated, It will reach and it uses and it will be able to apply to the suitable parameter in water quality modelling of the objective area which can be feeded by it becomes.

Sedimentary and Benthic Environment Characteristics in Macroalgal Habitats of the Intertidal Zone in Hampyeong Bay (함평만 조간대 해조류 분포지역의 퇴적 및 저서환경 특성)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.694-703
    • /
    • 2012
  • To understand the characteristics of sedimentary and benthic environments in habitats of naturally-occurring intertidal benthic macroalgae, various geochemical parameters of sediment (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) and pore water (temperature, salinity, pH, and nutrients) were measured in the southern intertidal zone of Hampyeong Bay at two month intervals from April to October 2009. Ecological characteristics including the distribution and biomass of benthic macroalgae were also investigated. Benthic macroalgae were distributed below 4 to 5 m depth from mean sea level near the lower portion of the intertidal zone where air exposure time is relatively short. The distribution area and biomass of benthic macroalgae gradually decreased during the study period. The surface sediments in the benthic algal region were mainly composed of finer sediments, such as slightly gravelly mud and mud. The temperature, salinity, pH, and nutrient concentrations (except dissolved inorganic nitrogen) in pore water did not differ in regions with and without benthic macroalgae, whereas the mean grain size and the concentrations of IL, COD, and AVS in sediments were much higher in regions harboring benthic macroalgae. The correlation between mean grain size and IL in sediments displayed two distinct gradients and the slope was much steeper in regions harboring benthic macroalgae, indicating that the content of organic matter in benthic algal region is not solely dependent on mean grain size. Our results indicate that the benthic macroalgae in the southern intertidal zone of Hampyeong Bay play an important role in the accumulation of organic matter in sediment.