• Title/Summary/Keyword: Dissolved Organic Carbon (DOC)

Search Result 178, Processing Time 0.026 seconds

Dissolved Organic Matters Characteristics in Freshwater

  • Park, Je-Chul;Oh, Young-Taek;Bae, Sang-Deuk;Ryu, Dong-Kyeong
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.26-26
    • /
    • 2004
  • This study was conducted to evaluate the characteristics of dissolved orgamc matters based on their origins. The dissolved organic carbon(DOC) represents an index for dissolved organic matter and basically regarded as a source of organic pollution. The monthly variations and vertical profiles of dissolved organic carbon(DOC) in Kumoh reservoir were surveyed from May 2001 to April 2002. In addition, other areas such as river, reservoir, sewage and industrial wastewater were also surveyed in summer 2001. Kumoh reservoir was divided with depth into three layers .: epilimnion, metalimnion and hypolimnion. The proportion of total DOC(T-DOC) was classified by labile DOC(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation. DOC of freshwater and Kumoh reservoir was ranged to be 1.6~4.1 mgC/L and 2.1~4.0 mgC/L, respectively. L-DOC accounted for 3~30% of DOC from watershed. Therefore, refractory dissolved organic carbon(R-DOC) was major component of DOC in the watershed. The decomposition rate(k) ranged from 0.008 $d^{-1}$ to 0.083 $d^{-1}$ in Kumoh reservoir. The highest decomposition rate(k) was observed at River Hoein III freshwater. Therefore, modified total organic carbon analyzer is needed to be applied for effective management of dissolved organic matter.

  • PDF

Runoff Characteristics of Refractory Organic Matters from Kyongan River Watershed during Rainfall Event and Dry Season (경안천 유역의 강우 시, 비 강우 시 난분해성 유기물질 유출 특성)

  • Kim, Taewon;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.397-404
    • /
    • 2011
  • This research investigates the runoff characteristics of refractory organic matters from Kyongan river watershed. Samples were taken 27 times during dry season, 4 times during rain events and analyzed into flow rate, Dissolved Organic Carbon (DOC), Particulate Organic Carbon (POC), Refractory Dissolved Organic Carbon (R-DOC), Refractory Particulate Organic Carbon (R-POC). R-DOC during dry season was the lowest in winter and showed a rising tendency in spring and R-POC changes less than R-DOC. The mass loading of Refractory Total Organic Carbon (R-TOC) in summer takes approximately 80% of 1 year mass loading. During rainy season, EMC of R-DOC was similar to R-DOC in dry season. But maximum EMC of R-POC was 12 times higher than that of R-POC in dry season. Results of the survey show that enhanced management of R-DOC in dry season and R-POC in rainy season is needed.

Global Increases in Dissolved Organic Carbon in Rivers and Their Implications

  • Kang, Ho-Jeong;Jang, In-Young;Freeman, Chris
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.453-458
    • /
    • 2010
  • DOC (Dissolved Organic Carbon) is an operational terminology for organic carbon molecules dissolved in natural waters. DOC has been studied by ecologists extensively, because it plays a key role in various ecological functions such as substrates for secondary production and the carbon cycle. DOC also represents a substrate for microbial growth within potable water distribution systems, and can react with disinfectants (e.g., chloride) to form harmful disinfection by-products. In addition, residual DOC may carry with it organically bound toxic heavy metals. DOC in aquatic ecosystems may ultimately be transported to the oceans, or released back to the atmosphere by heterotrophic respiration, which can accelerate global climate change. There is evidence that DOC concentrations in aquatic ecosystems are increasing in many regions of the world including Europe, North America, and even in Korea. Land use changes, elevated temperature, elevated $CO_2$, recovery from acidification, and nitrogen deposition have been proposed as mechanisms for the trend. However, the key driving mechanism is yet to be conclusively determined. We propose that more extensive and longer-term observations, research of chemical properties of DOC, impacts of elevated DOC on environmental issues and interdisciplinary approaches are warranted as future studies to fill the gaps in our knowledge about DOC dynamics.

Evaluation of the Possibility of Developing Organic Matter Indicators in Coastal Environments: Utilization of Dissolved Organic Carbon and Fluorescent Dissolved Organic Matter (연안환경에서 유기물 지표 개발을 위한 가능성 평가: 용존유기탄소와 형광용존유기물질 활용)

  • Lee, Min-Young;Yang, Kyungsun;Kim, Sunchan;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • In order to evaluate the dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM), as indicators of organic matter in the coastal environments, we measured the concentrations of DOC, FDOM, and chemical oxygen demand (COD) in saline groundwater (Woljeong, Pyoseon, and Hwasun beaches) and coastal seawater (Haengwon, Gwideok, Pyoseon, and Yeongnak) in Jeju, Korea. The highest concentrations of DOC and COD in groundwater were found in Woljeong and Pyoseon, and those in coastal water were observed in Haengwon and Pyoseon, indicating that the higher concentrations of DOC and COD seem to be associated with saline groundwater-driven dissolved organic matter (DOM) and/or biogeochemical processes. According to origin and optical properties of DOM using FDOM as a tracer, proportion of humic-like FDOM, more refractory DOM, was relatively greater in the groundwater than in the coastal water. With regard to this result, there was no relationship between DOC and COD in groundwater, while DOC showed a good positive correlation (r2 = 0.66) with COD in coastal water. This result indicates that COD as an indicator of assessment of DOM has a limitation in which it is difficult to quantify refractory DOM. Although DOC is a potential alternative to COD in the coastal environments, particulate organic carbon cannot be negligible due to relatively higher concentration compared to the open ocean. Therefore, the use of total organic carbon (TOC) as a replacement of COD in the coastal ocean is important, and the evaluation criterion of the TOC is necessary in order to evaluate of organic matter indicator in the various coastal environments.

Effects of organic carbon and UV wavelength on the formation of dissolved gaseous mercury in water under a controlled environment

  • Lee, Jae-In;Yang, Ji-Hye;Kim, Pyung-Rae;Han, Young-Ji
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • The effects of UV wavelength and dissolved organic carbon (DOC) on the formation of dissolved gaseous mercury (DGM) were investigated in a controlled environment. To remove any other influences than UV wavelength and DOC, purified water was used as the working solution. DGM was instantly produced with irradiation of all UV lights even without DOC; whereas, there was no noticeable increase of DGM during irradiation of visible light. The amount of formed DGM increased as the DOC concentration increased even in dark conditions; however, UV-B irradiation significantly promoted DGM production with DOC present. The rate constants of reduction ranged from $1.4{\times}10^{-6}s^{-1}$ to $3.5{\times}10^{-5}s^{-1}$, with the lower values occurring under the dark condition without DOC and the higher values resulting under UV-B irradiation and high DOC concentration. However, DGM production was not linearly correlated with the DOC concentration at higher range of DOC in this study. Future studies should investigate the effects of DOC concentration on mercury (Hg) reduction over the broad range of DOC concentrations with different DOC structures and with other influencing parameters.

Distribution of Dissolved Organic Carbon (DOC) in the Southwestern East Sea in Summer

  • Kim, Tae-Hoon;Kim, Gue-Buem
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.291-297
    • /
    • 2010
  • In the summer of 2008 (August 4-14), vertical and horizontal distributions of inorganic nutrients and dissolved organic carbon (DOC) were measured in the southwestern East Sea. Concentrations of DOC were determined for the first time in the southwestern East Sea using the high-temperature combustion oxidation (HTCO) method, and results were compared with those measured by another laboratory. Concentrations of DOC ranged from 58 to 104 ${\mu}M$ in the upper 200 m, showing a typical decreasing pattern with depth. Generally, concentrations of DOC were relatively lower, with higher nutrient concentrations, in the upper layer of the coastal upwelling zone. Concentrations of DOC ranged from 54 to 64 ${\mu}M$ in the deep Ulleung Basin (200-1500 m), and were higher than those in the Pacific and Atlantic oceans. In association with rapid vertical ventilation of the euphotic, this difference indicates a larger accumulation of semi-labile DOC in the deep East Sea than in the major oceans. A correlation between apparent oxygen utilization (AOU) and DOC in the deep ocean of the East Sea revealed that only a small portion (<10%) of the sinking DOC, relative to the sinking particulate organic carbon (POC), contributes to microbial degradation. Our results present an important data set of DOC in the East Sea, which plays a critical role in carbon cycle modeling and sequestration.

Evaluation of Pretreatment Processes for Dissolved Organic Carbon Removal in a Desalination Process (해수담수화에서 용존유기물을 제거하기 위한 전처리 공정의 평가)

  • Kim, Woo-Hang;Mitsumasa, Okada
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.447-451
    • /
    • 2004
  • The various pretreatment processes were evaluated to remove organic pollutants of weathered oil contaminated seawater(WOCS) for reverse osmosis desalination process, Biodegradation, coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration were used to evaluate the potential of organic pollutants removal in WOCS. Dissolved Organic Carbon(DOC) was almost not removed by biodegradation in WOCS. DOC was removed by 25% and 10% with the addition of $FeCl_3$ and PAC in WOCS, respectively. The removal efficiency using ultrafiltration(WOCS 500) was about 20% of DOC and 40% of $E_{260}$, respectively. In AOP application of WOCS, the removal of organic materials was improved up to 60% by the combination of $UV/O_3$ compared to UV process. However, 98% of DOC in woes could be removed by granular activated carbon filtration. It is revealed that activated carbon filtration is the best process for the pretratment of DOC removal.

Changes in the Concentrations and the Characteristics of Organic Carbon After Entrance into Dam Reservoirs (댐저수지 유입 후 유기탄소 농도 및 성상 변화)

  • Shin, Jae-Won;Lee, Bo-Mi;Hur, Jin;Park, Ji-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.81-87
    • /
    • 2013
  • Changes of organic carbon after the entrance into dam reservoirs were investigated using water samples collected in May, September, and October in 2010 from the inflow sites and the outlets of four selected dam reservoirs-Soyang, Chungju, Chungju regulation, and Uiam. Increase of refractory dissolved organic carbon (R-DOC) was observed only for large dam reservoirs with long residence times whereas the trend was not found for relatively small reservoirs. The effects of residence times on organic carbon changes were further confirmed by significant positive correlations between monthly residence times and the relative increase of either dissolved organic carbon (DOC) or R-DOC concentrations. Comparison of spectroscopic characteristics of DOC revealed that the changes in the large reservoirs in May might result from in-lake processes. The inflow of terrestrial sources of DOM during storms appears to largely affect the DOC quality of the large reservoirs for the rest of the sampling periods. The mechanism, however, did not fully explain the behaviors of DOC for the small sized reservoirs. Our combined results suggested that both residence time and the input of allochthonous carbon sources might substantially influence the quantity of DOC as well as its quality in dam reservoirs.

Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT (RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거)

  • Kim, Young Il;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.

Dynamics of Dissolved Organic Matter in eutrophic shallow Lake Kasumigaura, Japan. (수심이 얕은 부영양호에서 용존유기물의 거동)

  • 박제철
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.31-39
    • /
    • 1997
  • The seasonal and spatial changes in dissolved organic carbon(DOC) in Lake Kasumigaura, a shallow and eutrophic lake, were analyzed from October 1992 to October 1995. The proportion of T-DOC was classified by labile(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation, fractionated the molecular weight of T-DOC by ultrafiltration. The porewater DOC were measured at sedimental surface of the central basin in order to evaluate the DOC released from the sediment. The proportion of L-DOC and R-DOC were accounted for about 15% and 85% of T-DOC in the central basin, respectively. The molecular weight(MW) distribution occupied some 60% of the low and medium MW. The horizontal variation of T-DOC concentrations trended to higher in the central basin than in the inlet of influent rivers, because of contribution by autochthonous organic carbon loading. The seasonal variation of T-DOC showed to higher summer than winter in the inlet of influent, but at the central basin it fluctuated little seasonally. During the high increase of porewater DOC in 1994 evaluated the high release possibility from the sediment surface (10cm). The present study suggests that autochthonous organic carbon loading must be controlled for improving the water quality of the eutrophic lakes.

  • PDF