• 제목/요약/키워드: Dissolution property

검색결과 76건 처리시간 0.021초

니켈의 미세 전해 가공 시 전극 전위의 선정 (Determination of Electrode Potential in Micro Electrochemical Machining of Nickel)

  • 남호성;박병진;김보쳔;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.585-588
    • /
    • 2005
  • The dissolution characteristic of metal shows the different tendency according to the applied electrical potential, the kind of electrolyte and pH value, etc. In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. The anodic polarization curve of nickel has distinct three dissolution regions, i.e. two active regions and the transpassive dissolution region. In this paper, the stable electrode potentials of workpiece and tool were determined in sulfuric acid and hydrochloric acid solution, respectively. In each solution, different machining property was shown and possible electrochemical reactions were discussed. On the basis of this experiment, the methodology to obtain the proper electrode potential was suggested.

  • PDF

P2O5-K2O-FeO-CuO계 유리형성 및 이온용출 (Glass Formation and Ion Dissolution of P2O5-K2O-FeO-CuO Glasses)

  • 김기민;강원호
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.604-607
    • /
    • 2010
  • $P_2O_5-K_2O$-FeO-CuO계 유리의 형성및 이온용출에 대하여 연구하였다. $P_2O_5$를 60mol%로 고정하고 $K_2O$-FeO-CuO의 mol%를 10mol%에서 40mol%까지 변화를 주었다 제조된 유리시편을 증류수에서 13시간 동안 침적시키며 2시간 간격으로 용출 특성을 평가 하였다. 초기 유리구조 내 Phosphate의 $P_2O_5$가 1차 용출이 일어나며 2차로 염기성 산화물의 용출이 일어나면서 Cu, Fe 이온이 함께 용출되는 것으로 관찰되엇다. ICP 관찰시에는 유리의 형성 구조의 차이에 따라 용출량이 변화 하였고, 용출은 $10K_2O$(mol%)함량일 때 CuO와 FeO의 용출량이 가장 많이 일어나는 것으로 관찰되었다.

폴록사머를 이용한 디클로페낙 고형 좌제의 개발 (Development of Poloxamer-Based Solid Suppository Containing Diclofenac Sodium)

  • 용철순;오유경;김정애;김용일;박상만;양준호;이종달;최한곤
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권2호
    • /
    • pp.91-94
    • /
    • 2004
  • To develop a poloxamer-based solid suppository with poloxamer mixtures, the melting points of various formulations composed of P 124 and P 188 were investigated. To investigate the effect of poloxamer to the dissolution ad dissolution mechanism of diclofenac sodium from the suppository the dissolution of diclofenac sodium delivered by the poloxamer-based suppository was performed. Furthermore, to investigate the mucoadhesive property of the poloxamer-based sold suppository, the identification test in the rectum was carried out after its rectal administration in rats. The poloxamer mixtures composed of P 124 and P 188 were homogeneous. Ver small amounts of P 188 affected the melting points of poloxamer mixtures. In particular, the poloxamer mixture [P 124/P 188 (97/3%)] with the melting point of about $32^{\circ}C$ was a sold for at room temperature and instantly melted at physiological temperature. Furthermore, very small amounts of P 188 in the poloxamer-based suppository hardly affected the dissolution rates of diclofenac sodium from the suppository. Dissolution mechanism analysis showed the dissolution of diclofenac sodium was proportional to the time. At 4 h after administration, the blue colo of poloxamer-based suppository [diclofenac sodium/poloxamer mixture (2.5/97.5%)] with the P 124/ P 188 ratio of (97/3%) and blue lake in the rectum was faded. However, the position of suppository in the rectum did not significantly change with time. Thus, it retained in thε rectum for at least 4 h. Our results indicated that the poloxamer-based sold suppository with P 124 and P 188 would be a candidate of rectal dosage form for diclofenac sodium.

The Electrochemical Properties and Mechanism of Formation of Anodic Oxide Films on Mg-Al Alloys

  • Kim, Seong-Jong;Okido, Masazumi
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.975-980
    • /
    • 2003
  • The electrochemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH)₂ in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH)₂ was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the β phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in β phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in α phase, which had a lower Al content. In the anodic polarization test in 0.017 mol·$dm^{-3}$ NaCl and 0.1 mol·$dm^{-3}$ Na₂SO₄ at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the α phase is a non-compacted film. The anodic film on the α phase at 30 min was a compact film as compared with that at 10 min.

Characteristics Comparison of Anodic Films Formed on Mg-Al Alloys by Non-chromate Surface Treatment

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.300-308
    • /
    • 2004
  • The formation mechanism of anodic oxide films on Mg alloys when anodized in NaOH solution. was investigated by focusing on the effects of anodizing potential. Al content. and anodizing time. Pure Mg and Mg-Al alloys were anodized for 10 min at various potentials in NaOH solutions. $Mg(OH)_2$ was generated by an active dissolution reaction at the surface. and the product was affected by temperature. The intensity ratio of $Mg(OH)_2$ in the XRD analysis decreased with increasing applied potential. while that of MgO increased. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. And the intensity ratio of $Mg_{17}Al_{12}$/Mg increased with aluminum content in Mg-Al alloys. During anodizing. the active dissolution reaction occurred preferentially in ${\beta}\;phase(Mg_{17}Al_{12})$ until about 4 mins. and then the current density increased radually until 7 mins. The dissolution reaction progressed in a phase(Mg) which not formed the intermetallic compound. which had a lower Al content. In the anodic polarization test of $0.017\;mol{\cdot}dm^-3$ NaCl and $0.1\;mol{\cdot}dm^-3\;Na_2SO_4$ at 298 K. the current density of Mg-15 mass% Al alloy anodized for 10 mins increased. since the anodic film that forms on the a phase is a non-compacted film. The anodic film on the phase for 30 mins was a compact film as compared with that for 10 mins.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

The Sintering Temperature Effect on Electrochemical Properties of LiMn2O4

  • Hwang, Jin-Tae;Park, Sung-Bin;Park, Chang-Kyoo;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3952-3958
    • /
    • 2011
  • The effect of sintering temperature on the electrochemical property of $LiMn_2O_4$ was investigated. Results showed that the particle size was increased at higher sintering temperatures while the initial capacity was decreased after high temperature sintering. Capacity fading, on the other hand, was suppressed at lower sintering temperatures since the sintering at higher temperatures (${\geq}800^{\circ}C$) increased the Mn ions with a lower oxidation state ($Mn^{+3}$), which induced structural instability during cycling due to dissolution of Mn ions into the electrolyte. In particular, $LiMn_2O_4$ sintered above $830^{\circ}C$ showed severe capacity fading (capacity loss was 38% of initial capacity) by lower coulombic efficiency due to the abnormally increased particle size.

수화과정에서 전처리가 알루미늄 합금의 용출에 미치는 효과 (Effect of Pretreatment on the Dissolution of Aluminum Alloy during Hydration Process)

  • 이병구;이호연;탁용석
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.215-219
    • /
    • 2013
  • Aluminum alloy(3003) can be dissolved during hydration process with hot tap water. In order to increase the stability of aluminum alloy, it was pretreated with anodization and phosphoric acid before hydration process. The effect of pretreatment on the surface property changes was analyzed with X-ray Photoelectron Spectroscopy (XPS) and Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) and their results supported that the increase of hydroxyl group (-OH) on the surface formed during anodization and phosphorous acid treatment prevented the dissolution of aluminum alloy during hydration process at high temperature.

Molecular Effect of PVP on The Release Property of Carvedilol Solid Dispersion

  • Oh, Myeong-Jun;Shim, Jung-Bo;Lee, Eun-Yong;Yoo, Han-Na;Cho, Won-Hyung;Lim, Dong-Kyun;Lee, Dong-Won;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권3호
    • /
    • pp.179-184
    • /
    • 2011
  • This study aimed to confirm the effect of molecular weight (MW) in solid dispersion of carvedilol with poly-vinylpyrrolidone (PVP) of various MW. Solid dispersion of carvedilol with PVP was prepared by spray-drying method. Scanning electron microscopy (SEM) was used to analyze the surface of solid dispersion samples. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the crystalline of solid dispersion. Fourier transform infrared spectroscopy (FT-IR) was used to analyze the change of chemical structure characteristic of solid dispersion. DSC and XRD show that drug crystalline was changed. FT-IR revealed that chemical structure of solid dispersion comparing the chemical structure of drug was changed. The dissolution studies of solid dispersion presented at simulated gastric juice (pH 1.2). The dissolution rate of solid dispersion was dramatically enhanced than pure drug and the MW of PVP has an effect on the release property of carvedilol in solid dispersion. In conclusion, the present study has confirmed the effect of MW of PVP on release property of solid dispersion formulation of carvedilol with PVP.

PVP 첨가에 의해 제조된 올메사탄 메독소밀 고체분산체의 방출패턴 연구 (Release Behavior of Olmesartan Medoxomil from Solid Dispersion Prepared by PVP Addition)

  • 오승창;이천중;이현구;박진영;정현기;김영래;임동권;이동원;강길선
    • 폴리머
    • /
    • 제39권1호
    • /
    • pp.33-39
    • /
    • 2015
  • 올메사탄은 BCS 2단계에 해당하는 약물로 물에 잘 녹지 않는 난용성 약물이다. 이런 약물이 낮은 생체이용률과 제형을 설계하는 과정에서 어려움을 주는 원인이 된다. 본 연구에서는 올메사탄을 분무건조법 및 회전용매증 발법을 이용해 고체분산체를 제조하여 제법에 따른 난용성약물의 용출률을 확인하였다. 수용성 고분자로 PVP를 사용하여 약물과 고분자의 비율별로 고체분산체를 제조하였다. SEM을 이용하여 고체분산체의 형태학적인 특성을 분석하였고, 고체분산체의 결정학적 성질은 XRD와 DSC를 통하여 확인하였다. 또한 FTIR을 통해 화학적인 변화를 확인하고, 생체 외 용출거동 실험을 통하여 변화된 용출률을 확인하였다. 제조된 고체분산체는 pH 1.2에서 용출을 확인하였으며, 올메텍과 용출률을 비교하였으며, 분무건조를 통해 약물의 용출률을 향상시킬 수 있다는 것을 확인할 수 있다.