• Title/Summary/Keyword: Dissolution condition

Search Result 230, Processing Time 0.031 seconds

A Study on the manufacturing of porous membrane by the aluminum anodizing (알루미늄 양극산호를 이용한 다공성 견막 제조에 관한 연구)

  • Yoon, Jae-Hwan;Kang, Tak
    • Journal of the Korean institute of surface engineering
    • /
    • v.13 no.4
    • /
    • pp.221-227
    • /
    • 1980
  • When anodizing the Al in the acid electrolyte, it is well known that the parallel pores grow continuously perpendicular to the surface. This fact can be used for the manufacturing of the porous membrane, if thc pores pass through the anodized foil. Anodizing both surfaces of the Al-foil spontaneously in 20$^{\circ}C$, 2% oxalic acid under tile potentiostatic condition, it is found that the harrier layer remaining in the midst of the foil finally disappears and thc pores pass through the foil. And examined the porous structure change when the voltage is changed during the anodizing treatment. From the result, it is revealed that the new pores and cell grow, adjusting themselves to the final voltage. The characteristic of the porous membrane is greatly dependent upon the diameter of the pore and the cell. So studied the relationship between the voltage and the diameter of the pore and the cell quantitatively with the aid of field-assisted dissolution concept. And derived the following two equation, Pi = 8.32Vi, Ci = 26.80Vi. These equations are in good accord with the experimental data above 30V, but do not accord nuder 30V.

  • PDF

The Effect of Coagulant and Molecular Weight on the Wet Spinnability of Regenerated Silk Fibroin solution

  • Yoo, Young-Jin;Kim, Ung-Jin;Um, In-Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.1
    • /
    • pp.145-150
    • /
    • 2010
  • The regenerated silk fibroin with various molecular weights (MW) was prepared by different dissolution condition and the effect of coagulant on the wet spinnability of the various MW silk fibroin solutions dissolved in formic acid was investigated by the observation of wet spun filament in coagulant and the measurement of maximum draw ratio. The observation on the wet spun filament in coagulation bath revealed that good fibers without bead were formed in a high MW and a very high MW silk fibroin samples. In contrast, beads were observed in the silk fibroin sample with medium MW. The maximum draw ratio of wet spun silk fibroin filament decreased with MW reduction. The decrease of maximum draw ratio in isopropanol, acetone, DMF and THF was remarkably higher than that in methanol and ethanol, indicating that the coagulant type strongly influenced the wet spinnability. The two simple evaluation methods used in this study showed complementary information for wet spinnability: (a) The observation of filament in coagulant was effective to check a continuous fiber formation and a bead formation, and (b) the maximum draw ratio measurement was useful to examine the post drawing ability related to molecular orientation.

Synthesis and Characterization of $CeO_2$ Powders by the Hydrothermal Process (수열합성법을 이용한 세륨산화물 나노분말의 특성 및 합성에 대한 연구)

  • Kong, Myung-Ho;Na, Han-Gil;Kim, Hyoun-Woo;Yang, Hack-Hui
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.49-54
    • /
    • 2010
  • We have successfully synthesized $CeO_2$ nanopowders by means of the hydrothermal method, in a low temperature range of $100-200^{\circ}C$. In order to investigate the structure and morphology of the nanopowders, scanning electron microscopy and X-ray diffraction have been employed. In addition, for exploring the optical properties, Raman spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy have been used. In the optimized condition, with the pH, velocity, and time of 4.5, 600 rpm, and 60 h, the $CeO_2$ nanopowders with a diameter ranging from 50 to 150 nm have been synthesized. The nanopowders exhibited the visible emission mainly in the blue region. With comparing the reaction time, it is revealed that the extinction of functional groups at 60 h contributed to the growth and homogenization of the $CeO_2$ powders. Since the overgrowth and agglomeration of nanopowders were found, we suggest that the cracking/growth process is more favorable mechanism than the dissolution/precipitation process.

Synthesis and Characterization of Quartz Nanocrystals (석영 나노 결정의 합성과 특성)

  • Moon, Gyuseop;Chung, Sungwook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.697-700
    • /
    • 2020
  • We report the synthesis and characterization of quartz nanocrystals (NCs). Quartz NCs were synthesized from the dissolution of amorphous silica nanoparticle precursors under the mild hydrothermal condition of ~250 ℃ and autogenic pressure. It was confirmed that the average size of the nanostructure with a highly crystalline phase of α-quartz can be tuned in a relatively narrow range from 407.5 to 826.2 nm with respect to the reaction time. α-Quartz NCs have potential uses for technological applications in optoelectronics, sensing, and rechargeable battery devices.

Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal

  • Gha-Young Kim;Junhyuk Jang;Minsoo Lee;Mihye Kong;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4474-4480
    • /
    • 2022
  • Deep geological disposal using a multibarrier system is a promising solution for treating high-level radioactive (HLRW) waste. The HLRW canister represents the first barrier for the migration of radionuclides into the biosphere, therefore, the corrosion behavior of canister materials is of significance. In this study, the electrochemical behaviors of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KAERI underground research tunnel (KURT) groundwater solutions were examined. The corrosion potential, current, and impedance spectra of the test materials were recorded using electrochemical methods. According to polarization and impedance measurements, Cu exhibits relatively higher corrosion rates and a lower corrosion resistance ability than those exhibited by the other materials in the given groundwater condition. In the anodic dissolution tests, SS316L exposed to the groundwater solution exhibited the most uniform corrosion, as indicated by its surface roughness. This phenomenon could be attributed to the extremely low concentration of chloride ions in KURT groundwater.

Effect of various MEA fabrication methods on the PEMFC durability testing at high and low humidity conditions (MEA 제조 방법에 따른 상대습도 변화가 PEMFC 내구성에 미치는 영향)

  • Kim, Kun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.86.2-86.2
    • /
    • 2010
  • In order to improve polymer electrolyte membrane fuel cell (PEMFC) durability, the durability of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, is one of the vital issues. Many articles have dealt with catalyst layer degradation of the durability-related factors on MEAs in relation to loss of catalyst surface area caused by agglomeration, dissolution, migration, formation of metal complexes and oxides, and/or instability of the carbon support. Degradation of catalyst layer during long-term operation includes cracking or delamination of the layer which result either from change in the catalyst microstructure or loss of electronic or ionic contact with the active surface, can result in apparent activity loss in the catalyst layer. Membrane degradation of the durability-related factors on MEAs can be caused by mechanical or thermal stress resulting in formation of pinholes and tears and/or by chemical attack of hydrogen peroxide radicals formed during the electrochemical reactions. All of these effects, the mechanical damage of membrane and degradation of catalyst layers are more facilitated by uneven stress or improper MEA fabrication process. In order to improve the PEMFC durability, therefore, it is most important to minimize the uneven stress or improper MEA fabrication process in the course of the fabrication of MEA. We analyzed the effects of the MEA fabrication condition on the PEMFC durability with MEA produced using CCM (catalyst coated membrane) method. This paper also investigated the effects of MEA fabrication condition on the PEMFC durability by adding additional treatment process, hot pressing and pressing, on the MEA produced using CCM method.

  • PDF

Adsorption of Flexography Ink on Inorganic Particles Patched with Cationic Polymer (양이온성 고분자로 처리한 무기입자에 대한 플렉소그라피 잉크의 흡착)

  • Jeong, Young Bin;Kim, Jin Woo;Oh, Kyu Duk;Youn, Hye Jung;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.8-13
    • /
    • 2012
  • The flexography ink has disadvantage in a deinking process because it tends to form too fine particles in alkali condition to be removed in flotation deinking. The influence of pH conditions on the particle size of phthalocyanine cyan ink used for flexo-printing was investigated to see the effect of pH conditions on flexography ink dispersion. Flexography ink particles prepared by grinding dried ink films were used in this experiment. Greater reduction of the ink particle size was noticed under alkaline pH condition, which was attributed to dissolution of resin component of the ink. Adsorption behavior of flexography ink onto pigment particles was examined using clay and talc as substrate pigments. Pretreatment of inorganic pigments with a cationic poly-DADMAC increased the surface adsorption of flexography ink particles, which improved the removal of the inks by centrifugal sedimentation of inorganic pigments. Most efficient removal of the ink particles was achieved when an optimal addition level of the cationic polymer was used for pretreatment of inorganic pigments, and this optimal addition level corresponds to the surface saturation point of the polyelectrolyte. Adsorption of flexography ink particles onto inorganic pigments improved the ink removal in flotation deinking since the pigment particles has the optimal particle size for flotation deinking.

RF Power Conversional System for Environment-friendly Ferrite Core Inductively Coupled Plasma Generator (환경친화형 페라이트 코어 유도결합 플라즈마 고주파 전력 변환 장치)

  • Lee, Joung-Ho;Choi, Dae-Kyu;Kim, Soo-Seok;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.6-14
    • /
    • 2006
  • This paper is a study about a proper method of plasma generation to cleaning method and a high frequency power equipment circuit to generation of plasma that used cleaning of chamber for TFT-LCD PECVD. The high density plasma required for cleaning causes a possibility of high density plasma more than $1{\times}10^{11}[EA/cm^3]$. It apply a ferrite core of ferromagnetic body to a existing ICP form. In case of power transfer equipment on 400[kHz] high frequency to generation of plasma it makes certain a stable switching operation in condition of plasma through using a inverter form for general purpose HB. And it demonstrates the performance of power transfer equipment using methods of measurement which use a transformer of series combination the density of plasma and the rate of dissolution of $NF_3$ in condition of $A_r\;and\;NF_3$.

Improved Stability against Moisture of Amlodipine Maleate Tablets using Microcrystalline Cellulose and Pregelatinized Starch (미세결정셀룰로오스와 호화전분을 이용한 암로디핀말레이트 정제의 수분에 대한 안정성 개선)

  • Park, Ho-Seock;Hwang, Woo-Sin;Bang, Kyu-Ho;Park, Jeong-Sook;Cho, Cheong-Weon;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.3
    • /
    • pp.157-162
    • /
    • 2008
  • The aim of the study was to formulate the stable amlodipine maleate tablet by selecting and combining of suitable ingredients. Amlodipine tablets were designed by using different manufacturing methods or formulations. Dissolution rate at 30 min of newly formulated tablets was over 98% in 0.1 M HCl medium. After 4 months storage under accelerated condition, the changes of appearance, loss on drying, content and total impurity were investigated. For long-term stability tests, two formulations of K017 (direct compressed tablets consisting of microcrystalline cellulose and pregelatinized starch) and K018 (wet granulated tablets by OpadryAMB) were stored under $25^{\circ}C$, 60% RH for 24 months. Under the accelerated condition, moisture content in K017 formulation was increased as 5.96% for 4 months, while other formulations with anhydrous monobasic phosphoric potassium or by wet granulation showed higher increase in moisture content compared to K017. In addition, K017 formulation showed a low decrease in contents and total relative substance as 0.8% and 0.7%, respectively. Similar stability of amlodipine in K017 was obtained under the long-term stability test. These results indicate that the K017 combined with microcrystalline cellulose and pregelatinized starch as ingredients is very stable formulation to protect active substance from moisture contact and sustain stability. Therefore, suitable combination of ingredients such as microcrystalline cellulose and pregelatinized starch could attribute to enhance the stability of moisture-labile drug such as amlodipine maleate.

The Effect of Disintegrants on the Properties of Salicylamide Tablets (수종의 붕해제가 살리실아미드정제의 제제특성에 미치는 영향)

  • Hwang, Sung-Joo;Rhee, Gye-Ju;Jee, Ung-Kil;Kwak, Hyo-Sung;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Six common tablet disintegrants (corn starch, Avicel PH102, calcium carboxymethylcellulose, Primojel, Kollidon CL and Ac-Di-Sol) were used at the concentration of 0, 2, 4 and 6% (w/w) in salicylamide tablets made with wet granulation method. Certain physical parameters of the disintegrants (moisture sorption, hydration capacity and bulk density) were determined to evaluate their relative efficiency. The disintegration time and dissolution rate of the tablets were correlated well with the ranks of initial rate of moisture sorption for each disintegrant as follows; Ac-Di-Sol, Kollidon CL, primojel, calcium CMC, corn starch and Avicel PH102. The initial rate of moisture sorption was important for the disintegration capacity as well as hydration capacity. The effect of storage at different temperatures and relative humidity upon the tablets containing various disintegrants was evaluated in terms of tablet hardness and disintegration time. Storage at high temperature reduced the hardness substantially and retarded the disintegration of the all tablets studied. Especially, the hardness of tablets containing Kollidon CL was significantly reduced. Although the tablet hardness was decreased and the disintegration time was increased under a moderate humid condition, both of them were decreased under the severely high humid condition of 80 or 90% RH, which was due to the breakrupture of tablet matrix bonds by the excessive uptake of moisture. Therefore, the stability caused by moisture sorption should be considered, when disintegrants having high moisture sorption such as Kollidon CL, Ac-Di-Sol and Primojel were employed in the tablets containing water-labile or hygroscopic drugs.

  • PDF