• Title/Summary/Keyword: Dissolution Tank

Search Result 10, Processing Time 0.018 seconds

Efficient Micro-Ozone-Bubble Generation by Improving Ozone Dissolution Tank Structure (오존용해탱크 구조 개선을 통한 효율적인 마이크로오존버블 생성)

  • Park, Yong-hwa;Lee, Gwang-hi;Jang, Am
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.549-555
    • /
    • 2017
  • The purpose of this study is to investigate how ozone-dissolution-tank structure affects micro-ozone-bubble distribution, energy consumption and water treatment efficiency. The partition walls inside the ozone-dissolution-tank generate pressure changes, shear forces, and swirling flows, which change the size of the bubble diameter. The size of the bubble diameter differs by 10.5% depending on the partition walls. Changes in ozone-bubble diameter are related to energy consumption. As the ozone-bubble becomes smaller, the bubble generation energy increases, but the ozone production energy decreases as the dissolution efficiency increases. Therefore, an ozone-dissolution-tank should be determined by means of an optimal condition producing a micro-ozone-bubble with a minimum sum of bubble generation energy and ozone production energy. The energy consumed to inject the same amount of ozone into the effluent differs by 2.5% depending on the partition walls. However, considering the water treatment efficiency, the conditions for selecting the ozone-dissolution-tank are variable. This is because the free radicals that increase as the ozone-bubble gets smaller are very efficient for water treatment. Even at the same ozone injection concentration, the water treatment efficiency differs by 10.4% according to the partition walls. Therefore, we have studied ozone-dissolution-tank structure which produces reasonable ozone-bubble considering water treatment efficiency and energy efficiency.

A Study on the Collision Nozzle for Generating Microbubble by Self-Suction Method (자흡방식에 의해 마이크로버블을 발생시키는 충돌 노즐에 대한 연구)

  • Woo-Jin Kang;Sang-Hee Park;Seong-Hun Yu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1047-1053
    • /
    • 2023
  • An experimental study was performed on the collision nozzle system that generates microbubble by air self-suction using a venturi nozzle. This study experimentally investigates the pressure of a pump and a dissolution tank, water flow rate, air self-suction amount and microbubble generation amount. The experimental conditions were varied by changing the diameter of the collision nozzle (de=4,5,6,7,8mm), the pumping power(0.5hp, 1.0hp) and the capacity of the dissolution tank(4.4L, 8/8L). The pressure change of the pump according to the outlet diameter of the collision nozzle showed that the 1.0hp pump power operated more stably than the 0.5hp pump. The pressure change in the dissolution tank was shown to decrease rapidly as the outlet diameter of the nozzle increased. The flow rate of recirculating water was shown to increase as the nozzle diameter increased. Additionally, it was shown that the pump capacity of 1.0hp increased the flow rate more than that of 0.5hp. The self-suction air flow rate was shown to occur above de=6mm, and the air flow rate increased as the nozzle diameter increased. Also, as the pump capacity increased, the self-suction amount of air increased. It was shown that the amount of microbubble less than 50mm generated was maximum when the nozzle diameter was 6mm, the pump power was 1.0hp, and the dissolution tank capacity was 8.8L.

A Study on the Microbubble Characteristics of Ozone to Improve Dissolution Efficiency (오존 용해효율 향상을 위한 미세기포 특성 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.47-53
    • /
    • 2009
  • Ozone is a strong oxidant and a powerful disinfectant. In general, it has been used in drinking water treatment during last 100years. Ozone dissolution features are defined by the two categories of ozone contactors, bubble-diffuser and sidestream ozone contactor. Currently, sidestream-injection systems are gaining in popularity but operating cost might be slightly higher. Sidestream ozone system dissolve ozone into a sidestream flow via an injection setup or in the main process flow stream in some sidestream arrangements. The sidestream flow is subsequently mixed with the main process flow stream, which is directed to a reation tank or pipeline for oxidation and disinfection reactions. The purpose of this study is to suggest optimal operating pressure, to figure out the static-mixer effect and to understand the microbubble characteristics of ozone to improve dissolution efficiency.

A Study on the Static mixer and Microbubble of the Sidestream Ozone Contact System to Improve Water Treatment Efficiency (사이드스트림 오존 접촉조에서 수처리 효율 향상을 위한 정적혼합기와 미세기포에 관한 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.763-768
    • /
    • 2009
  • Ozone is a strong oxidant and a powerful disinfectant. In general, it has been used in drinking water treatment during last 100years. Ozone dissolution features are defined by the two categories of ozone contactors, bubble-diffuser and sidestream ozone contactor. Currently, sidestream-injection systems are gaining in popularity but operating cost might be slightly higher. Sidestream ozone system dissolve ozone into a sidestream flow via an injection setup or in the main process flow stream in some sidestream arrangements. The sidestream flow is subsequently mixed with the main process flow stream, which is directed to a reation tank or pipeline for oxidation and disinfection reactions. The purpose of this study is to suggest optimal operating pressure, to figure out the static-mixer effect and to understand the microbubble characteristics of ozone to improve dissolution efficiency.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

Development of a Field Oxygenation Device and Its Practice in the Oxygen Depleted Water Mass (빈산소 수괴해역 용존산소 환경개선장치 개발과 현장 적용)

  • Lee, Yong-Hwa;Kim, Young-Suk;Shim, Jeong-Min;Kwon, Kee-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.4
    • /
    • pp.339-344
    • /
    • 2010
  • Oxygen depleted water mass can damage aquatic animals not only in direct way but also in indirect way by generating toxic substances including occurrence of hydrogen sulfide and ammonia which are also highly detrimental to animal life in the water mass. An oxygen dissolution device was developed, which makes turnover of the oxygen rich (over 20 mg/L) surface water down to the bottom where hypoxia is evident and tested the device in terms of oxygen recovery in the oxygen depleted bottom water. the device with turnover rates of $3.6\;m^2$/min at the liquid oxygen injection rate of 48~26.3 L/min could recover dissolved oxygen level to 7~25 mg/L at depth 7 m to lead to the dissolution level of over 90% by the supply of liquid oxygen. The running advantage of the device is that it does not require any auxiliary tank and higher energy for operation. Therefore, it can be highly useful device to relieve damages to the farmed animals in the oxygen depleted waters.

Corrosion Control in Water Distribution System using Lime and Carbon Dioxide(I) - Determination of Optimum Operational Conditions in Lime Adding Process (소석회와 CO2를 이용한 상수관로의 부식제어(I) - 소석회 주입공정의 최적 운전인자 도출)

  • Sohn, Byung-Young;Byun, Kyu-Sik;Kim, Young-Il;Lee, Doo-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • The pH & alkalinity adjustment method by lime and carbon dioxide($CO_2$) for corrosion control in water distribution system was investigated to determine the optimum operational condition in lime adding process in water treatment plant(WTP). The mixing time at dissolution tank and sedimentation time at saturator for maintaining optimal turbidity condition of lime supernatant were 60~75 minutes and 75~95 minutes, respectively. There was no difference according to $CO_2$ adding methods such as $CO_2$ saturated water or $CO_2$ gas. But, $CO_2$ saturated water could be convenience at WTP in terms of pH control and quantitative dosing. To minimize generation of calcium carbonate products, the short time interval between adding of lime and $CO_2$ is most important. The lime should be added below 32 mg/l for preventing pH rising and generation of calcium carbonate products at the heating condition.

CO2 Mineral Carbonation Reactor Analysis using Computational Fluid Dynamics: Internal Reactor Design Study for the Efficient Mixing of Solid Reactants in the Solution (전산유체역학을 이용한 이산화탄소 광물 탄산화 반응기 분석: 용액 내 고체 반응물 교반 향상을 위한 내부 구조 설계)

  • Park, Seongeon;Na, Jonggeol;Kim, Minjun;An, Jinjoo;Lee, Chaehee;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.612-620
    • /
    • 2016
  • Aqueous mineral carbonation process, in which $CO_2$ is captured through the reaction with aqueous calcium oxide (CaO) solution, is one of CCU technology enabling the stable sequestration of $CO_2$ as well as economic value creation from its products. In order to enhance the carbon capture efficiency, it is required to maximize the dissolution rate of solid reactants, CaO. For this purpose, the proper design of a reactor, which can achieve the uniform distribution of solid reactants throughout the whole reactor, is essential. In this paper, the effect of internal reactor designs on the solid dispersion quality is studied by using CFD (computational fluid dynamics) techniques for the pilot-scale reactor which can handle 40 ton of $CO_2$ per day. Various combination cases consisting of different internal design variables, such as types, numbers, diameters, clearances and speed of impellers and length and width of baffles are analyzed for the stirred tank reactor with a fixed tank geometry. By conducting sensitivity analysis, we could distinguish critical variables and their impacts on solid distribution. At the same time, the reactor design which can produce solid distribution profile with a standard deviation value of 0.001 is proposed.

Development of Fertilizer-Dissolving Apparatus Using Air Pressure for Nutrient Solution Preparation and Dissolving Characteristics (공기를 이용한 양액 제조용 비료용해 장치 개발 및 용해특성)

  • Kim, Sung Eun;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.163-169
    • /
    • 2012
  • We have conducted three experiments to develop a fertilizer-dissolving apparatus used in fertigation or hydroponics cultivation in order to decrease the fertilizer dissolving time and labor input via automation. All of the experiments were conducted twice. In the first experiment, four selected treatments were tested to dissolve fertilizers rapidly. The first treatment was to dissolve fertilizer by spraying water with a submerged water pump, placed in the nutrient solution tank. The water was sprayed onto fertilizer, which is dissolved and filtered through the hemp cloth mounted on the upper part of the nutrient solution tank (Spray). The second treatment was to install a propeller on the bottom of the nutrient solution tank (Propeller). The third treatment was to produce a water stream with a submerged water pump, located at the bottom of the tank (Submerged). Finally, the fourth treatment was to produce an air stream through air pipes with an air compressor located at the bottom of the tank (Airflow). The Spray treatment was found to take the shortest time to dissolve fertilizer, yet it was inconvenient to implement and manage after installation. The Airflow treatment was thought to be the best method in terms of the time to dissolve, labor input, and automation. In the second experiment, Airflow treatment was investigated in more detail. In order to determine the optimal number of air pipe arms and their specification, different versions of 6- and 8-arm air pipe systems were evaluated. The apparatus with 6 arms (Arm-6) that was made of light density polyethylene was determined to be the best system, evaluated on its time to dissolve fertilizer, easiness to use regardless of the lid size of the tank, and easiness to produce and install. In the third experiment, the Submerged and Arm-6 treatments were compared for their dissolving time and economics. Arm-6 treatment decreased the dissolving time by 8 times and proved to be very economic. In addition, dissolving characteristics were investigated for $KNO_3$, $Ca(NO_3)_2{\cdot}4H_2O$, and Fe-EDTA.

Study on the Decontamination of Primary Cooling Pump in HANARO (하나로 1차 냉각펌프 제염에 대한 고찰)

  • An Jung-Sug;Lee Kyung-Ho;Kim Kwang-Dug;Park Young-Chul
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.21-29
    • /
    • 2005
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Recently, ten years after the initial operation of the HANARO, one of the two primary cooling pumps was decontaminated for overhaul maintenance in 2004. Before decontamination exposure doserate and surface contamination level of primary cooling pump measured at 4 points. After final decontamination exposure doserate and surface contamination level of primary cooling pump remeasured by same method done before. It is easy to decontaminate the out side exposed surfaces of the pump, but it is difficult to approach the inside surface due to double volute installed in the casing. Therefore, a new decontamination facility has been developed to solve this problem. A concentrated de-contaminant (DX-300) is rotated in the closed pump casing by the impeller actuated by a temporary motor. Nuclide particles are removed by the emulsification effect of the de-contaminant and the surface contaminants are chemically removed from the pump by the corrosion and dissolution effect. The inside surfaces of the primary cooling pump have been decontaminated by using the facility. As results, the contamination level of the inside surfaces was maintained below the surface contamination limit.

  • PDF