• Title/Summary/Keyword: Dissipation of excess pore pressure

Search Result 61, Processing Time 0.022 seconds

Dissipation Pattern of Excess Pore Pressure after Liquefaction in Saturated Sand Deposits (포화된 모래지반의 액상화후 과잉간극수압 소산양상)

  • 하익수;박영호;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.90-97
    • /
    • 2003
  • The purpose of this study is to understand the dissipation pattern of excess pore pressure after liquefaction which governs the post-liquefaction behavior of liquefied sand deposits. 1-g shaking table tests were carried out on 5 different kinds of sands, all of which had high liquefaction potentials. During the tests excess pore pressure at various depths, and surface settlements were measured. The measured curve of the excess pore pressure dissipation was simulated using the solidification theory, and from the analysis of the velocity of dissipation, the dissipation pattern of excess pore pressure after liquefaction was examined. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size ( $D_{10}$) divided by the coefficient of uniformity ( $C_{u}$), and the increase in the initial relative density of the ground played a role in shifting this correlation curve toward an increased dissipation velocity. From the correlation, an approximate method was recommended for prediction of the dissipation curve of excess pore pressure after liquefaction in saturated sand deposits.s.s.

  • PDF

Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests (충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구)

  • Kim, Dong-Hwi;Ha, Ik-Soo;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

Identification of ambient pore pressure and rigidity index from piezocone dissipation test (피에조콘 소산시험을 이용한 평형간극수압과 강성지수의 역해석)

  • 김영상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.49-54
    • /
    • 2002
  • This paper describes a systematic way of simultaneously identifying the ambient pore pressure and the rigidity index (=G/s$\_$u/) of soil by applying an optimization technique to the piezocone dissipation test result. An ambient pore pressure and optimal rigidity index were determined by minimizing the differences between theoretical excess pore pressures developed by Randolph & Wroth(1979) and measured excess pore pressures from piezocone using optimization technique. The effectiveness of the proposed back-analysis method was examined against the well-documented performance of piezocone dissipation tests (Tanaka & Sakagami, 1989), from the viewpoints of proper determination of selected target parameters and saving of test duration. It is shown that the proposed back-analysis method can evaluate properly the ambient pore pressure and the rigidity index by using only the early phase of the dissipation test data. Also, it is shown that with the optimized rigidity index and ambient pore pressure the proposed back-analysis method permits the horizontal coefficient of consolidation to be identified rationally.

  • PDF

Development of Dissipation Model of Excess Pore Pressure in Liquefied Sand Ground (액상화된 모래지반의 과잉간극수압 소산모델 개발)

  • Kim, Sung-Ryul;Hwang, Jae-Ik;Ko, Hon-Yim;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.13-22
    • /
    • 2007
  • Recently, many researches on the dissipation of excess pore pressure in liquefied sand grounds have been performed to evaluate post-liquefaction behavior of structures. In this research, centrifuge tests were performed to analyze liquefaction behavior of level saturated sand grounds. Based on the test results, the evaluation model of solidified layer thickness was developed to simulate non-linear variation of the thickness with time. The thickness evaluation model was combined with the solidification theory and the consolidation theory in order to simulate dissipation of excess pore pressure. The suggested dissipation model properly estimated the solidified layer thickness and the time history of excess pore pressure.

Modeling of Dissipation of Excess Pore Pressure in Liquefied Sand Grounds (액상화 지반의 과잉간극수압 소산 모델링)

  • Kim, Sung-Ryul;Hwang, Jae-Ik;Ko, Hon-Yim;Kim, Myoung-Mo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.89-96
    • /
    • 2006
  • Recently, many researches on the dissipation of excess pore pressure in liquefied sand grounds have been performed to evaluate post-liquefaction behaviors of structures. In this paper. centrifuge tests were performed to simulate liquefaction behaviors of prototype soil. The evaluation model of solidified layer thickness was developed to simulate non-linear variation of solidified layer thickness with time. Also, the dissipation of excess pore pressure in liquefied sand was evaluated by applying the solidification theory and the consolidation theory. The developed model gives a good estimation of the solidified layer thickness and the time history of excess pore pressure.

  • PDF

Post-Cyclic Deformation Behavior of Non-Liquefied Weathered Soils (반복재하후 미액상화 풍화토 지반의 변형 거동)

  • 최연수;정충기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.485-492
    • /
    • 2001
  • Weathered soil is one of the most representative soils in Korea. In this study, a series of cyclic triaxial tests was carried out to predict the post-cyclic deformation behavior of weathered soils in case of non-liquefaction. Excess pore pressure response during cyclic loading and volumetric strain during the dissipation of excess pore pressure were measured varying the confining pressure, relative density and cyclic stress ratio. Based on the test results, it Is found that the modified excess pore pressure ratio, excess pore pressure ratio normalized by cyclic stress ratio, is uniquely correlated with the number of cycles irrespective of confining pressure and cyclic stress ratio. Using the newly proposed MEPPR(modified excess pore pressure ratio) concept, it is possible to easily evaluate the excess pore pressure and the settlement of weathered soils due to cyclic loading by greatly reduced number of tests. It is also verified that the reconsolidation volumetric strain is independent of the way how the excess pore pressure was generated.

  • PDF

Comparison of 1-g and Centrifuge Model Tests on Liquefied Sand Grounds (액상화 지반에 대한 1-g 모형실험과 원심모형실험의 비교 연구)

  • Kim, Sung-Ryul;Hwang, Jae-Ik;Ko, Hon-Yim;Kim, Myoung-Mo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.97-104
    • /
    • 2006
  • The centrifuge and 1-g shaking table tests were performed simultaneously to compare the dynamic behaviors of loose sands of same geotechnical properties. The prototype soils were 10 m thick liquefiable loose sands. The geometric scaling factors were 20 for 1-g and 40 for centrifuge tests. The excess pore pressure, surface settlement, and acceleration in the soil were measured at the same locations in the 1-g and centrifuge tests. The total excess pore pressure from development to dissipation was measured. In the centrifuge test, viscous fluid was used as the pore water to eliminate the time scaling difference between dynamic time and dissipation time. In the 1-g tests, the steady state concept was applied to determine the unit weight of the model soil, and two different time scaling factors were applied for the dynamic time and the dissipationtime. It is concluded that the 1-g tests can simulate the excess pore pressure of the prototype soil if the permeability of the model soil is small enough to prevent dissipation of excess pore pressure during shaking and the dissipation time scaling factor is properly determined.

  • PDF

Estimation of the Permeability Variation in Saturated Sand Deposits Subjected to Shaking Load Using 1-g Stinking Table Test (1-g 진동대시험을 이용한 진동하중을 받는 포화된 모래지반의 투수계수 변화 추정)

  • 하익수;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.363-369
    • /
    • 2003
  • The purpose of this study is to understand the dissipation pattern of excess pore pressure after liquefaction and to estimate the variation in permeability during shaking load, which should be known for settlement predictions of the ground undergoing liquefaction. In this study, 1-g shaking table tests were carried out for 5 different kinds of sands, all of which had high liquefaction potentials. During the tests excess pore pressure at various depths, and surface settlements were measured. The measured dissipation curve of the excess pore pressure after liquefaction was linearly simulated using the solidification theory, and from the analysis of the slopes of linearly simulated curves, the correlation between dissipation velocity and the gradation characteristics was obtained. By substituting this correlation and the measured settlement to the dissipation velocity equation recommended in solidification theory, the permeability during dissipation was calculated, which was used for estimating the permeability variation during shaking load. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size divided by the coefficient of uniformity. The permeability during dissipation and liquefaction increased by 1.1∼2.8 times and 1.4∼5 times compared to the initial permeability of the original ground, respectively. And the amount of increase became greater as the effective grain size of the test sand increased and the coefficient of uniformity decreased.

Evaluation of Coefficient of Consolidation for Dilatory Dissipation Result of Piezocone Test (피에조콘 소산시험시 지연소산이 발생한 경우에 대한 압밀계수 평가 방법)

  • Ha, Tae-Gyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1328-1339
    • /
    • 2008
  • For a commonly used piezocone with a shoulder filter element, dilatory dissipation behavior, which shows an initial temporary increase in pore pressure, has been observed in overconsolidated cohesive soils. However, there is no appropriate way to estimate a consolidation parameter from a dilatory dissipation curve because currently available interpretation methods were developed based on the monotonic decrease of the excess pore pressure. In this study, the interpretation method for evaluation of coefficient of consolidation from a dilatory dissipation result of piezocone test was developed by performing the finite difference analysis on the dissipation after cone penetration. The distribution of the initial excess pore pressure induced by cone penetration, which is the core of the analysis, was estimated from the empirical modification of a solution proposed by cavity expansion theory and critical state concept. And the proposed interpretation method was applied to the field piezocone data and the results were compared to those obtained from laboratory tests. Its reliability was confirmed by the insignificant difference between the values of coefficient of consolidation from piezocone tests and laboratory consolidation tests.

  • PDF

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.