• 제목/요약/키워드: Dissimilarity computation

검색결과 6건 처리시간 0.027초

A Simple Tandem Method for Clustering of Multimodal Dataset

  • Cho C.;Lee J.W.;Lee J.W.
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.729-733
    • /
    • 2003
  • The presence of local features within clusters incurred by multi-modal nature of data prohibits many conventional clustering techniques from working properly. Especially, the clustering of datasets with non-Gaussian distributions within a cluster can be problematic when the technique with implicit assumption of Gaussian distribution is used. Current study proposes a simple tandem clustering method composed of k-means type algorithm and hierarchical method to solve such problems. The multi-modal dataset is first divided into many small pre-clusters by k-means or fuzzy k-means algorithm. The pre-clusters found from the first step are to be clustered again using agglomerative hierarchical clustering method with Kullback- Leibler divergence as the measure of dissimilarity. This method is not only effective at extracting the multi-modal clusters but also fast and easy in terms of computation complexity and relatively robust at the presence of outliers. The performance of the proposed method was evaluated on three generated datasets and six sets of publicly known real world data.

  • PDF

마르코프 체인과 계층적 클러스터링 기법을 이용한 작곡 기법 (Music Composition Using Markov Chain and Hierarchical Clustering)

  • 권지용;이인권
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.744-748
    • /
    • 2008
  • 본 논문에서는 주어진 예제 멜로디 데이터를 이용하여 효과적으로 새로운 곡을 작곡하는 시스템을 제안한다. 우리가 제안하는 기법은 k-차원 마르코프 체인을 이용하여 마디 단위의 음악 블록을 합성한다. 한마디 단위를 하나의 마르코프 체인의 상태로 취급할 경우 매우 많은 상태를 고려해야 하므로, 이를 계층적 클러스터링 기법을 통하여 학습이 용이한 정도로 상태를 줄인다. 예제 데이터의 각 음악 블록은 소속된 클러스터 번호의 시퀀스로 대체되어 학습 데이터로 사용된다. 학습된 마르코프 체인의 상태를 전이하면서 각 상태에 해당되는 클러스터의 음악 블록을 랜덤하게 선택하여 합성한다. 학습된 마르코프 체인은 효과적으로 예제 음악과 비슷하면서 새로운 곡을 생성할 수 있었다.

  • PDF

Salient Object Detection via Adaptive Region Merging

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4386-4404
    • /
    • 2016
  • Most existing salient object detection algorithms commonly employed segmentation techniques to eliminate background noise and reduce computation by treating each segment as a processing unit. However, individual small segments provide little information about global contents. Such schemes have limited capability on modeling global perceptual phenomena. In this paper, a novel salient object detection algorithm is proposed based on region merging. An adaptive-based merging scheme is developed to reassemble regions based on their color dissimilarities. The merging strategy can be described as that a region R is merged with its adjacent region Q if Q has the lowest dissimilarity with Q among all Q's adjacent regions. To guide the merging process, superpixels that located at the boundary of the image are treated as the seeds. However, it is possible for a boundary in the input image to be occupied by the foreground object. To avoid this case, we optimize the boundary influences by locating and eliminating erroneous boundaries before the region merging. We show that even though three simple region saliency measurements are adopted for each region, encouraging performance can be obtained. Experiments on four benchmark datasets including MSRA-B, SOD, SED and iCoSeg show the proposed method results in uniform object enhancement and achieve state-of-the-art performance by comparing with nine existing methods.

An efficient genetic algorithm for the design optimization of cold-formed steel portal frame buildings

  • Phan, D.T.;Lim, J.B.P.;Tanyimboh, T.T.;Sha, W.
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.519-538
    • /
    • 2013
  • The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

컬러 분포와 WordNet상의 유사도 측정을 이용한 의미적 이미지 검색 (Semantic Image Retrieval Using Color Distribution and Similarity Measurement in WordNet)

  • 최준호;조미영;김판구
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.509-516
    • /
    • 2004
  • 의미기반 이미지 검색에서의 의미적 내용 인식은 주석 위주의 텍스트 정보를 이용하는 것이 일반적이다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사하여 쉽게 구현할 수 있으나, 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석 처리된 단어와 정확한 매칭이 없다면 검색할 수 없는 단점이 있었다. 이에 본 논문에서는 Ontology의 일종인 WordNet을 이용하여 깊이, 정보량, 링크 타입, 밀도 등을 고려한 단어간 의미 유사도를 측정하여 패턴 매칭의 문제점을 해결하고자 한다. 또한, 이미지의 컬러 분포 유사도를 측정하여 저차원 특징과 결합한 의미적 이미지 검색이 가능하도록 설계하였다. 제안된 검색 방안에 대해 'Microsoft Design Gallery Live'의 주석을 포함한 이미지를 대상으로 실험한 결과, 기존 의미기반 검색 시스템보다 향상된 결과를 확인하였다.

유전자 알고리즘을 이용한 서울시 군집화 최적 변수 선정 (Selection of Optimal Variables for Clustering of Seoul using Genetic Algorithm)

  • 김형진;정재훈;이정빈;김상민;허준
    • 대한공간정보학회지
    • /
    • 제22권4호
    • /
    • pp.175-181
    • /
    • 2014
  • 정부 3.0이라는 새로운 정부운영 계획과 함께 다양한 공공정보를 민간이 활용할 수 있게 되었으며, 특히 서울은 이러한 행정정보 공개 및 활용을 선도하고 있다. 공개된 행정정보를 통해 각 지역을 특징짓는 행정요소를 발견할 경우, 각종 행정정책을 위한 의사결정 수단에 반영할 수 있을 뿐만 아니라 특정 지역의 고객 특성을 파악하여 특화된 서비스나 상품을 판매하는 마케팅 수단으로도 사용할 수 있을 것으로 사료된다. 하지만, 방대한 양의 행정자료로부터 각 군집의 특성을 명확히 구분할 수 있는 최적의 조합을 찾는 과정은 조합최적화 문제로서 상당한 연산량을 요구한다. 본 연구에서는 서울시에서 제공하는 다차원 행정자료로부터 서울시를 대표하는 문화 산업의 중심인 서초구, 강남구, 송파구 등의 강남 3구를 다른 지역과 효과적으로 구분하는 행정요인를 찾고자 하였다. 방대한 양의 행정정보로부터 두 군집간의 차이점을 극대화하는 요인을 선별하기 위한 최적화 방법으로 유전자 알고리즘을 이용하였으며, 군집간 차이를 계산하는 척도로는 Dunn 지수를 이용하였다. 또한 유전자 알고리즘의 연산속도의 향상을 위해 Microsoft Azure에서 제공하는 cloud computing을 이용한 분산처리를 수행하였다. 자료로는 통계청으로 부터 취득한 총 718개의 행정자료를 이용하였으며, 그 중 28개가 최적 변수로 선정되었다. 검증을 위해 선정된 28개의 변수를 입력값으로 Ward의 최소분산법 및 K-means 알고리즘을 통한 군집화를 수행한 결과 두 경우 모두 강남 3구가 다른 지역으로부터 효과적으로 분류됨을 확인하였다.