• Title/Summary/Keyword: Dissimilar Weld

Search Result 229, Processing Time 0.022 seconds

Analysis of Impact Characteristics of Bonded Dissimilar Materials for Center Pillar (센터필라 적용을 위한 이종 접합강의 충격 특성 해석에 관한 연구)

  • Nam, Ki-Woo;Park, Sang-Hyun;Yoo, Jung-Su;Lee, Sang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.929-934
    • /
    • 2012
  • This study was carried out to analyze the dynamic characteristics of laser tailor-welded blanks (TWBs) made of dissimilar materials. The analysis was performed using Hyper Works 10.0 with Solver LS-DYNA v.971. 2D-Shell was used as the modeling element, and the number of elements and nodes was 35,641 and 36,561, respectively. The impact speed was 10 km/h. To analyze the impact characteristics according to the height of the weld line for the upper and lower parts of the center pillar, the length of the lower part was set as 300 and 400 mm. When the lower part was made of SPFC980 steel with a length of 300 mm, the deformation was the smallest and the absorbed energy of the impact force was the largest. On based the lower part of center pillar, the position of TWB shows the shorter and the better value. In other words, the performance depended on the proportion of the upper part made of high-strength SABC1470 steel. A lower part made of SPFH590 steel showed large deformation. In contrast, a lower part made of SPFC980 steel showed significantly lesser deformation. Therefore, the impact performance of a lower part made of SPFC980 steel with a length of 300 mm showed the best analysis result.

An Evaluation of the Fracture Behavior for Flash Butt Welding zone by Acoustic Emission Method (AE방법에 의한 Flash Butt 용접부의 파괴거동 평가)

  • 김용수;이하성;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 1994
  • In this study, we conducted experimental tests to evaluate fracture behaviors of fresh-butt welded metal by Acoustic Emission technique. We selected similar welding and dissimilar welding process, the one welded for SM45C, SS41 and SUS304 of each material, the other for SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The fracturing processes of weld metal were estimatied through the fracture toughness test with compact tension specimens and fractography analysis. In ASTM test method E-399, type I curves for materials of this study were obtained by load-cod diagram of fracture toughness test. and 5% offset load( $P_{5}$) was estimated as the estimated crack initial load( $P_{Q}$), The estimated crack initial load( $P_{Q}$) of similar welding materials generally lower than base matal, and then SM45C appeared greatly in decreasing rate of PB, SS41 and SUS304 appeared in order. $P_{Q}$ of dissimilar welding materials were lower than the similar welding materials. $P_{Q}$ of welding of SM45C and SS41 appeared in small, SUS304 and SS41 appeared greatly in dissimilar welding materials. In fracture toughness test, AE counts increased before the inflection point of the slope, decreased after that. It was found that increasing of AE counts were due to the microcrack formation at the crack tip near the $P_{5}$ point through AE data. For welding materials in this study, both low and high AE amplitude appeared simulataneously. It was confirmed that the low AE amplotude was due to formation of micro void, micro crack or micro dimple, the high AE amplitude was caused by microvoid coalescence and quasi-cleavage fracture through analyses of fractograpy.apy.apy.apy.

  • PDF

An Experimental Study on the Fracture Behavior for Flash Butt Welding Zone (Flash Butt 용접부의 파괴거동에 관한 실험적 연구(I))

  • 김용수;신근하;강동명
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.65-72
    • /
    • 1992
  • Objective of this research is to evaluate fracture behaviors of fresh-butt welded metal by the acoustic emission technique. The specimens used are medium carbon steel(SM45C), mild steel (SS41) and stainless steel(SUS304), which have different weldability. The similar welding and dissimilar welding processes are considered, in the former SM45C, SS41 and SUS304 are used, in the later the following metals are used SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The characteristics of fracture in weld metal are eshmated by the tension test with nominal speciemns, the fracture toughness test with compact tension specimens and fractography analysis. The results of tension test show for base metals and similar welding materials that the yield strength and ultimate strength of similar welding materials are increased, the elongation of those are decreased. The weldability of SUS304 is better than that of SM45C and SS41 In similar welding materials. Mechanical properties of dissimilar welding mateiiths we lower than those of similar welding materials. In dissimilar welding materials, the weldability of SM45C and SUS304 is better than that of SM45C and SS41, and also weidability of SS41 and SUS304 is better than SS41 and SM45C. Comparing mechanical properties with AE counts, it is found that AE conuts appeared on a small before the limit load of elasticity(P$_{e}$), and apper greatly near yield strength region in tension test. These results could contribute to the safety analyses and the evaluation of strength for welding structure.e.

  • PDF

Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys (마찰교반접합의 공정변수가 AA2219-AA2195 이종 알루미늄 접합에 미치는 영향)

  • No, Kookil;Yoo, Joon-Tae;Yoon, Jong-Hoon;Lee, Ho-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.331-338
    • /
    • 2017
  • This study was carried out to investigate the optimum condition of a friction stir welding process for a joint of AA2219-T87 and AA2195-T8 dissimilar aluminum alloys. These alloys are known to have good cryogenic properties, and as such to be suitable for use in fuel tanks of space vehicles. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool. The experiment was conducted under conditions in which the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. After welding, the microstructure was observed and the micro-hardness were measured; non-destructive evaluation was carried out to perform tensile tests on defect-free specimens. The result was that the microstructure of the weld joint underwent dynamic recrystallization due to sufficient deformation and frictional heat. The travelling speed of the tool had little effect on the properties of the joint, but the properties of the joint varied with the rotation speed of the tool. The conditions for the best joining properties were 600 rpm and 180-240 mm/min when the AA2219-T8 alloy was on the retreating side(RS).

Tensile Strength Application Using a Definitive Screening Design Method in Friction Stir Welding of Dissimilar Cast Aluminum and High-Strength Steel with Pipe Shape (파이프 형상의 이종 주조알루미늄-고장력강의 마찰교반용접에서 확정선별설계법에 의한 인장강도 응용)

  • Choy, Lee-jon;Park, Seong-Hwan;Lee, Myung-Won;Park, Jae-Ha;Choi, Byeong-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.98-104
    • /
    • 2020
  • Recently, friction stir welding of dissimilar materials has become one of the biggest issues in lightweight and eco-friendly bonding technology. In this study, a lightweight torsion beam axle, which is an automobile chassis component, was used in the welding to cast aluminum material. The friction stir welding process of A357 cast aluminum and FB590 high-strength steel as well as the effects of the process parameters were investigated and optimized using a novel definitive screening design (DSD). ANOVA was used to predict the importance of the process parameters with 13 degradation experiments using the proposed DSD. Also, FSWed experiments were conducted using an optical microscope analysis to investigate the tensile strength behavior in the weld area. In addition to determining the interaction between the tool's rotational speed and the plunge speed, results indicate that the influence of the plunge depth was the most significant.

Laser Energy Optimization for Dissimilar Polymer Joining (이종폴리머 접합을 위한 레이저 에너지 최적제어 기법)

  • Song, Chi Hun;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.63-69
    • /
    • 2014
  • Dual laser heat sources were used for polymer based material joining. An infrared camera and thermocouple DAQ system were used to correlate the temperature distribution to computer simulation. A 50 degree tilted pre-heating laser source was acting as a heating source to promote the temperature to minimize thermal shock by the following a welding heat source. Based on the experimental result, the skin depth was empirically estimated for computer simulation. The offsets of 3mm, 5mm and 10mm split by weld and preheat were effectively used to control the temperature distribution for the optimal laser joining process. The closer offset resulted in an excessive melting or burning caused by sudden temperature rising. The laser power was split by 50%, 75% and 100% of the weld power, and the best results were found at 50% of preheating. To accurately simulate the physical laser beam absorption and joining optical properties were experimentally measured for the computer FEM simulation. The simulation results showed close correlation between theoretical and experimental results. The developed dual laser process is expected to increase productivity and minimize the cost for the final products.

Butt Welding Characteristics of Austenitic 304 Stainless Steel Using a Continuous Wave Nd:YAG Laser Beam (오스테나이트계 304 스테인리스강의 Nd:YAG 레이저 맞대기 용접특성)

  • Yoo, Young-Tae;Oh, Yong-Seok;Shin, Ho-Jun;Im, Kie-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.165-173
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

A Development of Experimental Model Prediction of Leakage Pressure in MPW (전자기 펄스 용접시 누수압력을 예측하기 위한 실험모델의 개발)

  • Shim, Ji-Yeon;Kim, Ill-Soo;Kim, In-Ju;Kang, Bong-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.652-657
    • /
    • 2009
  • MPW(Magnetic Pulse Welding) is a technologies for welding of metals by means of repulsive force on account of the interaction between electro-magnetic field of coil and current induced in outer pipe. These MPW is one of the most useful welding process of welding ability of the dissimilar metal in which cylindrical materials, such as pipe, tube. As the quality of a weld joint is strongly influenced by process parameters during the welding process and the success of the welding to evaluated according to the leakage pressure. Generally, the process parameters is magnetic pressure, the gap between outer pipe and inner pipe, and the ratio of thickness to diameter of pipe(D/T) in MPW. Therefore, the goal of this study was to explain the effect of parameters on the weld joint leakage pressure. For these purposes, FFD(Fractional Factorial Design) were used for the experiment. The measured data were analyzed by regression analysis and verification experiments with random condition were conducted to confirm the suggested experimental model.

  • PDF

Field Application of Phased Array Ultrasonic Testing for Structural Weld Overlay on Dissimilar Welds of Pressurizer Nozzles (가압기 노즐 이종금속 용접부의 구조적 오버레이 용접부에 대한 위상배열 초음파기법의 현장 적용)

  • Kim, Jin-Hoi;Kim, Yongsik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.4
    • /
    • pp.268-274
    • /
    • 2015
  • Weld overlay was first used in power plants in the US in the early 1980s as an interim method of repairing the welds of flawed piping joints. Weld overlaid piping joints in nuclear power plants must be examined periodically using ultrasonic examination technology. Portable phased array ultrasonic technology has recently become available. Currently, the application of preemptive weld overlays as a mitigation technique and/as a method to improve the examination surface condition for more complex configurations is becoming more common. These complex geometries may require several focused conventional transducers for adequate inspection of the overlay, the original weld, and the base material. Alternatively, Phased array ultrasonic probes can be used to generate several inspection angles simultaneously at various focal depths to provide better and faster coverage than that possible by conventional methods. Thus, this technology can increase the speed of examinations, save costs, and reduce radiation exposure. In this paper, we explain the general sequence of the inspection of weld overlay and the results of signal analysis for some PAUT (phased array ultrasonic testing) signals detected in on-site inspections.

Effect of Post-Weld Heat Treatment on the Mechanical Properties and Microstructure of P-No. 1 Carbon Steels (P-No. 1 탄소강의 기계적 특성과 미세조직에 미치는 용접후열처리의 영향)

  • Lee, Seung-Gun;Kang, Yongjoon;Kim, Gi-Dong;Kang, Sung-Sik
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • This study aims to investigate the suitability of requirement for post-weld heat treatment(PWHT) temperature when different P-No. materials are welded, which is defined by ASME Sec. III Code. For SA-516 Gr. 60 and SA-106 Gr. B carbon steels that are typical P-No. 1 material, simulated heat treatment were conducted for 8 h at $610^{\circ}C$, $650^{\circ}C$, $690^{\circ}C$, and $730^{\circ}C$, last two temperature falls in the temperature of PWHT for P-No. 5A low-alloy steels. Tensile and Charpy impact tests were performed for the heat-treated specimens, and then microstructure was analyzed by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. The Charpy impact properties deteriorated significantly mainly due to a large amount of cementite precipitation when the temperature of simulated heat treatment was $730^{\circ}C$. Therefore, when dissimilar metal welding is carried out for P-No. 1 carbon steel and different P-No. low alloy steel, the PWHT temperature should be carefully selected to avoid significant deterioration of impact properties for P-No. 1 carbon steel.