• 제목/요약/키워드: Dissimilar Al alloys

검색결과 33건 처리시간 0.027초

알루미늄 합금과 그 접합 방법 (Aluminum alloys and their joining methods)

  • 정도현;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제25권2호
    • /
    • pp.9-17
    • /
    • 2018
  • Aluminum (Al) and its alloys have been used widely in a variety of industries such as structural, electronic, aerospace, and particularly automotive industries due to their lightweight characteristic, outstanding ductility, formability, high oxidation and corrosion resistance, and high thermal and electrical conductivity. Al have different kinds of alloys according to the various additional elements system and they should be selected properly depending on their effectiveness and suitability for their particular purpose. The major elements for Al alloys are silicon (Si), magnesium (Mg), manganese (Mn), copper (Cu), and zinc (Zn). In order for Al alloys to use for each industry, it is necessary to study of Al to Al joining and/or the Al to dissimilar materials joining to combine the individual parts into one. Many studies on joining technologies about Al to Al and Al to dissimilar materials have been performed such as press joining, bolted joint, welding, soldering, riveting, adhesive bonding, and brazing. This study reviews a variety of Al alloys and their joining method including its principles and properties with recent trends.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other ocean structures because of their high strength, corrosion-resistance and light weight properties. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective methode to reduce weight of the structures. Ti and Al have great differences in materials properties, and intermetallic compounds such as $Ti_3Al$, TiAl, $TiAl_3$ are easily formed at the contacting surface between Ti and Al. Thus, dissimilar welding and joining of Ti and Al are considered to be very difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50 m/min) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

선박용 이종 알루미늄 합금 미그 용접부의 기계적 및 전기화학적 특성 평가 (Evaluation of Electrochemical and Mechanical Characteristics in MIG Welding Parts of Dissimilar Al Alloys for Ship)

  • 우용빈;김성종
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.34-40
    • /
    • 2009
  • In the study, it was carried out dissimilar metal welding on materials for Al ship. The electrochemical and mechanical characteristics evaluated for specimen welded by ROBOT. The hardness of welding zone is lower than those of heat affected zone and base metal. At the result of tensile test, the specimen welded with ER5183 welding material presented excellent property compared with ER5556. The polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. At the Tafel experiments result, the corrosion density in welded with ER5183 welding material presented the lowest value.

이종재료(STS304+Al6061) TIG-FSW Hybrid 용접부의 열 특성 해석 (Analysis of Complex Heat Distribution in TIG Assisted Friction Stir Welding of Dissimilar Materials (STS304+Al6061))

  • 엠.에스.비죠이;방희선;방한서
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.59-59
    • /
    • 2010
  • Friction stir welding has become a viable and important manufacturing alternative or fabrication component, especially in aerospace and automobile applications involving aluminium alloys. In recent years, there is an increasing interest for FSW of dissimilar metals and alloys, particularly systems which are difficult to weld by conventional, thermal (or fusion) welding. In this study we tried to analyse the complex heat distribution occurring in TIG assisted FSW of dissimilar butt joint (STS304 and Al6061). For this, an analytical model for heat generation by FSW based on contact conditions has been developed. The heat input was calculated considering the coefficient of friction and slip factor between each work piece material with the tool material. The thermal model is used to generate the temperature characteristics curve, which successfully predicts the maximum welding temperature in each alloys. The analysis was carried out using the in-house solver.

  • PDF

FSW된 이종알루미늄합금의 접합 특성 및 미세 조직 (Mechanical Properties and Microstructure on Dissimilar Friction-Stir-Weld of Aluminium Alloys)

  • 한민수;장석기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.75-81
    • /
    • 2011
  • 이종합금인 알루미늄 합금 6061-T6와 알루미늄 합금 5083-O의 용접을 위해 마찰교반 용접기술을 사용하였다. 마찰교반 용접된 이종 접합부에 대하여 기계적 특성, 경도 및 조직변화를 관찰하였다. 용접재의 기계적특성은 후진 측에 위치한 알루미늄 합금의 교반영역에 형성되는 미세조직이 주요한 변수로 작용하였다. 이종 알루미늄 합금이 교차한 양파 모양 형상의 얇은 층을 이루었다. 미세조직관찰에서 공구회전방향과 무관하게 이종합금 접합부에 기공이 관찰되지 않았으나 6061-T6 쪽 열영향부 영역에서 결정립 조대화기 뚜렷하였다. 본 논문의 연구결과, 결함이 없는 최상의 용접조건은 Al 6061-T6를 공구 진행방향에 전진 측에, Al 5083-O를 후진 측에 위치하고, 이송속도 124 mm/min, 1250 rpm의 공구의 회전수, 5 mm의 프루브 직경, 4.5 mm의 프루브 길이, 20 mm의 공구어깨, $2^{\circ}$의 공구 경사각 이다. 이때 용접재의 최대인장강도는 231 MPa이였고, 항복강도는 121 MPa을 나타내었다.

이종 알루미늄 합금의 로봇 미그 용접 시 용접재료에 따른 기계적 및 전기화학적 특성 평가 (Mechanical and electrochemical characteristics with welding materials in robotic MIG welding of dissimilar Al alloys)

  • 김성종;한민수;우용빈
    • Corrosion Science and Technology
    • /
    • 제12권5호
    • /
    • pp.245-252
    • /
    • 2013
  • In this study, mechanical and electrochemical characteristics with welding material in MIG welded with ROBOT for dissimilar Al alloys were investigated using various experiment methods. The MIG welding by ROBOT with ER5183 and ER5556 for the 5456-H116 and 6061-T6 Al alloy were carried out. The hardness of welding zone was lower than that of base metal. In electrochemical experiment, ER5183 welding material presented excellent characteristics. The yield strength and maximum tensile strength in welding with welding material of ER5183 presented lower value than those of ER5556. The elongation and time-to-fracture showed the opposite results.

고상접합을 이용한 Al/Mg 합금의 이종 용접 (Solid State Joining Processes for Dissimilar Joints of Mg/Al Alloys)

  • 김흥주;김성욱;천창근;장웅성
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.41-41
    • /
    • 2009
  • To evaluate the applicability of dissimilar joining between Mg and Al alloys in automobile manufacturing process, solid state joining processes such as magnetic pulse welding(MPW), friction stir welding(FSW) and friction spot joining(FSJ) were attempted successfully. MPW process has been concentrated mainly on round section tube to tube and tube to bar welds. AZ31 Mg alloy has been successfully welded to pure Al A1070 as well as to Al alloy A3003. While, for friction stir welding of dissimilar sheet joints, AZ31B/A6061 with the thickness of 2mm were used and a square butt joint with a good quality was obtained at the conditions of 0.8mm/sec of travel speed and tool rotation speed of 850rpm. The maximum tensile strength of 179 MPa, which was about 80 % of the Mg base metal tensile strength, has been obtained. Finally, friction spot joining was attempted to make a dissimilar lap joint between AZ31(0.8mm) and A6061(1mm), while the joint exhibited the same level of tensile shear strength as that of similar Mg joint.

  • PDF

자동차 이차전지 제조를 위한 알루미늄과 무산소동의 레이저 용접특성 (Laser Welding Characteristics of Aluminum and Copper Sheets for Lithium-ion Batteries)

  • 강민정;박태순;김철희;김정한
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.58-64
    • /
    • 2013
  • Several joining methods involving resistance welding, laser welding, ultrasonic welding and mechanical joining are currently applied in manufacturing lithium-ion batteries. Cu and Al alloys are used for tab and bus bar materials, and laser welding characteristics for these alloys were investigated with similar and dissimilar material combinations in this study. The base materials used were Al 1050 and oxygen-free Cu 1020P alloys, and a disk laser was used with a continuous wave mode. In bead-on-plate welding of both alloys, the joint strength was higher than the strength of O tempered base material. In overlap welding, the effect of welding parameters on the tensile shear strength and bead shape was evaluated. Tensile shear strength of overlap welded joint was affected by interfacial bead width and weld defect formation. The tensile-shear specimen was fractured at the heat affected zone by selecting proper laser welding parameters.

중엔트로피 합금 기지 위에 적층조형된 스테인리스강과 타이타늄 합금의 접합특성 분석 (Joint Properties of Stainless Steel and Titanium Alloys Additive Manufactured on Medium Entropy Alloys)

  • 박찬웅;;이민규;김정한
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.319-326
    • /
    • 2019
  • Additive manufacturing (AM) is a highly innovative method for joining dissimilar materials for industrial applications. In the present work, AM of STS630 and Ti-6Al-4V powder alloys on medium entropy alloys (MEAs) NiCrCo and NiCrCoMn is studied. The STS630 and Ti64 powders are deposited on the MEAs. Joint delamination and cracks are observed after the deposition of Ti64 on the MEAs, whereas the deposition of STS630 on the MEAs is successful, without any cracks and joint delamination. The microstructure around the fusion zone interface is characterized by scanning electron microscopy and X-ray diffraction. Intermetallic compounds are formed at the interfacial regions of MEA-Ti64 samples. In addition, Vicker's hardness value increased dramatically at the joint interface between MEAs and Ti-6Al-4V compared to that between MEAs and STS630. This result is attributed to the brittle nature of the joint, which can lead to a decrease in the joint strength.