• Title/Summary/Keyword: Disposal system

Search Result 794, Processing Time 0.026 seconds

Fuzzy ART Neural Network-based Approach to Recycling Cell Formation of Disposal Products (Fuzzy ART 신경망 기반 폐제품의 리싸이클링 셀 형성)

  • 서광규
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.187-197
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling product families using group technology in their end-of-life phase. Disposal products have the uncertainties of product condition usage influences. Recycling cells are formed considering design, process and usage attributes. In this paper, a new approach for the design of cellular recycling system is proposed, which deals with the recycling cell formation and assignment of identical products concurrently. Fuzzy ART neural networks are applied to describe the condition of disposal product with the membership functions and to make recycling cell formation. The approach leads to cluster materials, components, and subassemblies for reuse or recycling and can evaluate the value at each cell of disposal products. Disposal refrigerators are shown as an example.

Recycling Cell Formation using Group Technology for Disposal Products (그룹 데크놀로지 기법을 이용한 폐제품의 리싸이클링 셀 형성)

  • 서광규;김형준
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.05a
    • /
    • pp.111-123
    • /
    • 2000
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end of life phase. Disposal products have the uncertainties of product status by usage influences. Recycling cells are formed considering design, process and usage attributes. In this paper, a novel approach to the design of cellular recycling system is proposed, which deals with the recycling cell formation and assignment of identical products concurrently. Fuzzy clustering algorithm and Fuzzy-ART neural network are applied to describe the states of disposal product with the membership functions and to make recycling cell formation. This approach leads to recycling and reuse of the materials, components, and subassemblies and can evaluate the value at each cell of disposal products. Application examples are illustrated by disposal refrigerators, compared fuzzy clustering with Fuzzy-ART neural network performance in cell formation.

  • PDF

WOLSONG LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE DISPOSAL CENTER: PROGRESS AND CHALLENGES

  • Park, Jin-Beak;Jung, Hae-Ryong;Lee, Eun-Young;Kim, Chang-Lak;Kim, Geon-Young;Kim, Kyung-Su;Koh, Yong-Kwon;Park, Kyung-Woo;Cheong, Jae-Hak;Jeong, Chan-Woo;Choi, Jong-Soo;Kim, Kyung-Deok
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.477-492
    • /
    • 2009
  • In this paper, we discuss the experiences during the preparation of the Wolsong Low- and Intermediate-Level Radioactive Waste Disposal Center. These experiences have importance as a first implementation for the national LILW disposal facility in the Republic of Korea. As for the progress, it relates to the area of selected disposal site, the disposal site characteristics, waste characteristics of the disposal facility, safety assessment, and licensing process. During these experiences, we also discuss the necessity for new organization and change for a radioactive waste management system. Further effort for the safe management of radioactive waste needs to be pursued.

Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal

  • Gha-Young Kim;Junhyuk Jang;Minsoo Lee;Mihye Kong;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4474-4480
    • /
    • 2022
  • Deep geological disposal using a multibarrier system is a promising solution for treating high-level radioactive (HLRW) waste. The HLRW canister represents the first barrier for the migration of radionuclides into the biosphere, therefore, the corrosion behavior of canister materials is of significance. In this study, the electrochemical behaviors of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KAERI underground research tunnel (KURT) groundwater solutions were examined. The corrosion potential, current, and impedance spectra of the test materials were recorded using electrochemical methods. According to polarization and impedance measurements, Cu exhibits relatively higher corrosion rates and a lower corrosion resistance ability than those exhibited by the other materials in the given groundwater condition. In the anodic dissolution tests, SS316L exposed to the groundwater solution exhibited the most uniform corrosion, as indicated by its surface roughness. This phenomenon could be attributed to the extremely low concentration of chloride ions in KURT groundwater.

Significance of In-Situ Stresses in Stability Analysis of Underground Nuclear Waste Disposal Repository (방사성 폐기물 지하처분장의 안정성 분석에 있어서 암반내 초기응력의 역할과 의미)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.26-31
    • /
    • 2007
  • The 11 nuclear power plants have been taking charge of more than 40% of the total electrical power development in Korea. In addition to the existing nuclear power plants at Gori, Wolsung, Youngkwang, etc., the 12 nuclear power plants are expected to be newly established until 2006. So, the 23 nuclear power plants will produce the electric power as much as more than 50% of the national gross production. However the nuclear power plants are inevitably generating the detrimental atomic wastes. Therefore the disposal techniques for the nuclear wastes should be ensured considering a very high safety factor. According to the basic researches in KAERI, the underground disposal repositories are reported to be most favorable for Korea. The KBS-3 disposal system has been strongly suggested by KAERI and this system has a deep tunnel with several disposal boreholes in tunnel floor. The nuclear wastes, which are sealed tightly in a canister, will be disposed in these boreholes. Considering the disposal tunnel in a great depth, the in-situ stress regimes will affect severely the tunnel stability. Consequently the effect of the in-situ stresses on the disposal tunnel and the role of the in-situ stresses in tunnel stability analysis are examined by the numerical studies.

Development of User-friendly Modeling Interface for Process-based Total System Performance Assessment Framework (APro) for Geological Disposal System of High-level Radioactive Waste (고준위폐기물 심층처분시스템에 대한 프로세스 기반 종합성능평가 체계(APro)의 사용자 친화적 모델링 인터페이스 개발)

  • Kim, Jung-Woo;Lee, Jaewon;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.227-234
    • /
    • 2019
  • A user-friendly modeling interface is developed for a process-based total system performance assessment framework (APro) specialized for a generic geological disposal system for high-level radioactive waste. The APro modeling interface is constructed using MATLAB, and the operator splitting scheme is used to combine COMSOL for simulation of multiphysics and PHREEQC for the calculation of geochemical reactions. As APro limits the modeling domain to the generic disposal system, the degree of freedom of the model is low. In contrast, the user-friendliness of the model is improved. Thermal, hydraulic, mechanical and chemical processes considered in the disposal system are modularized, and users can select one of multiple modules: "Default process" and multi "Alternative process". APro mainly consists of an input data part and calculation execution part. The input data are prepared in a single EXCEL file with a given format, and the calculation part is coded using MATLAB. The final results of the calculation are created as an independent COMSOL file for further analysis.

The Study for Reducing the Borrowing Cost for LILW Disposal (중·저준위방사성폐기물처분사업에서 금융비용 감소를 위한 연구)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.89-96
    • /
    • 2014
  • The repository for the disposal of LILW which is generated from nuclear power plants and industries is expected to be completed in 2014. For the disposal of LILW, it is important to secure a disposal facility itself, but it is also very important to establish a reasonable charging system which all shareholders are satisfied with. Korea's disposal fee for LILW is higher than other countries' fee, which is a burden to waste generators as well as the waste management organization. The partial reason for the high disposal fee is put on the high social and construction cost when compared with other countries. However the major reason is put on the excessive borrowing cost that is used for the construction of the LILW disposal facility. In this study, we proposed the way to reduce the excessive borrowing cost for sustainable project managements of LILW disposal by analyzing a cost structure.

A Study on the Development of the FEP and Scenario for the HLW Disposal in Korea (우리나라의 고준위폐기물 처분을 위한 FEP과 시나리오 개발)

  • Kang, Chul-Hyung;Jeong, Jong-Tae;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.133-141
    • /
    • 2012
  • The impacts influenced on the performance and safety of a repository are classified as units of Features, Events, and Processes (FEP), for the total system performance assessment (TSPA) related to the permanent disposal of HLW. The importance is evaluated in consideration of the frequency, consequence, regulation, suitability of a specific site, etc. and then these are grouped as a similar FEP. A scenario describing the migration of radionuclide from the repository to the biosphere is derived from understanding the interaction among these groups. KAERI has developed the KAERI FEP lists by review and collation of the foreign studies. The KAERI FEP list has been reviewed by several Korean experts. The five major scenarios describing possible future evolutions of the geological disposal system have been developed by RES and PID methods. Also the CYPRUS which is a KAERI integrated database management system for the total system performance assessment (TSPA) related to the permanent disposal of HLW has been developed and the results of the FEP and scenario development have been uploaded in this system.

The Retained Documents Disposal Project and Reorganization of National Records Management System(1968~1979): Focused on Reorganization the Government Document Classification Scheme and Criteria for Retention Period (보존문서정리작업과 국가기록관리체계의 개편(1968~1979) - 공문서분류표와 보존연한책정기준의 개편을 중심으로 -)

  • Lee, Seung-Il;Lee, Sang-Hun
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.8 no.1
    • /
    • pp.65-96
    • /
    • 2008
  • The Retained documents disposal project, promoted in 1968 and 1975, was executed as part of administrative plans for prompt movement of the government in case of national emergency. It was main contents that archival documents were re-appraised and reduced the least, and then moved rearward. The Retained documents disposal project denied The Records Management System of Korean Government that had been founded in 1964, promoted reduction of documents physically for convenience to dispersion of the government. Korean Government had completed these projects and then reorganized records management system to reduce creation of archival documents systematically in 1979.

The State-of-the Art of the Borehole Disposal Concept for High Level Radioactive Waste (고준위방사성폐기물의 시추공 처분 개념 연구 현황)

  • Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • As an alternative of the high-level radioactive waste disposal in the subsurface repository, a deep borehole disposal is reviewed by several nuclear advanced countries. In this study, the state of the art on the borehole disposal researches was reviewed, and the possibility of borehole disposal in Korean peninsula was discussed. In the deep borehole disposal concept radioactive waste is disposed at the section of 3 - 5km depth in a deep borehole, and it has known that it has advantages in performance and cost due to the layered structure of deep groundwater and small surface disposal facility. The results show that it is necessary to acquisite data on deep geologic conditions of Korean peninsula, and to research the engineering barrier system, numerical modeling tools and disposal techniques for deep borehole disposal.