• Title/Summary/Keyword: Display cloning

Search Result 34, Processing Time 0.029 seconds

Cloning and Characterization of a Thioredoxin Gene, CpTrx1, from the Chestnut Blight Fungus Cryphonectria parasitica

  • Kim, Ji-Hye;Kim, Dae-Hyuk
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.556-561
    • /
    • 2006
  • A differential display for the expression profiles of wild-type Cryphonectria parasitica and its virally-infected isogenic hypovirulent strain revealed several transcripts of interest, which evidenced significant matches with fungal genes of known function. Among which, we have further analyzed an amplified PCR product with significant sequence similarity to the known fungal stress-responsive thioredoxin gene from Neurospora crassa. The product of the cloned thioredoxin gene, CpTrx1, consists of 117 amino acids, with a predicted molecular mass of 13.0 kDa and a pI of 5.4. Sequence comparisons demonstrated that the deduced protein sequence of the CpTrx1 gene evidenced a high degree of homology to all known thioredoxins, with the highest degree of homology with trx1, a thioredoxin gene from Saccharomyces cerevisiae, and evidenced a preservation of the conserved hall markresidues (Trp-Cys-Gly-Pro-Cys) at the active site of thioredoxin. The E. coli-generated CpTRX1 manifested thioredoxin activity, according to the insulin reduction assay, which indicates that the cloned gene does indeed encode for the C. parasitica thioredoxin.

Diversity Analysis of Japonica Rice using MITE-transposon Display (MITE-AFLP를 이용한 자포니카 벼의 다양성 검정)

  • Hong Seong-Mi;Kwon Soo-Jin;Oh Chang-Sik;Wessler Susan R.;Ahn Sang-Nag
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • Miniature inverted transposable elements (MITEs) are abundant genomic components in plant including rice. MITE-transposon display (MITE-TD) is an Amplified Fragment Length Polymorphism (AFLP)-related technique based on MITE sequence. In this study, we used the MITE-AFLP for the analysis of diversity and relation-ship of the 114 japonica accessions. Of the several MITEs, the mPing family was applied to detect polymorphisms based on PCR amplification. The BfaI adaptor primer and the specific primer derived from mPing terminal inverted repeat (TIR) region were used to PCR amplification of 114 accessions. Nine primer pairs produced a total of 160 polymorphic bands. PIC values of the polymorphic bands generated by nine primer pairs ranged from 0.269 (BfaI + ACT) to 0.426 (BfaI + T). Each accession revealed a distinct fingerprint with two primer combinations, BfaI + G and BfaI + C. Cluster analysis using marker-based genetic similarity classified 114 accessions into five groups. MITE-AFLP markers were genetically mapped using a population of 80 BILs (BC1F7) derived from a cross between the rice accessions, Milyang 23 and Hapcheonaengmi 3. Eight of the markers produced with the primer pair BfaI + 0 were mapped on chromosomes 1, 2, 4, 5, 7, and 9. Considering that one MITE-AFLP marker on chromosome 7 was tightly linked to the Rc gene, the MITE-AFLP markers will be useful for gene tagging and molecular cloning.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Molecular Cloning and Characterization of Outer Envelope Membrane Protein from Salicornia herbacea (퉁퉁마디로부터 색소체 외막 단백질 유전자의 분리 및 발현분석)

  • Ermawati Netty;Cha, Joon-Yung;Liang, Yingshi;Jung, Min-Hee;Shin, Dongjin;Lee, Byung-Hyun;Lee, Kon-Ho;Son, Daeyoung
    • Journal of Plant Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.273-278
    • /
    • 2004
  • Complementary DNA encoding chloroplast outer envelope membrane protein (OEP) from the halophyte Salicornia herbacea has been cloned and sequenced. The full length cDNA is 596 bp and encodes a polypeptide of 91 amino acid residues with a molecular mass of 8.9 kDa. The expression level of ShOEP increased by salt, drought and ABA treatments. ShOEP expression was largely induced in roots and shoots by high salts. The biological function of ShOEP was examined by yeast complementation. ShOEP can suppress Na$^{+}$ sensitivity of yeast mutant (cnb$\Delta$) in the presence of salt. These results suggest that ShOEP is a salt inducible gene and may have functions in the regulation of plant salt stress.ant salt stress.

Molecular Cloning and Characterization of Attacin from the Swallowtail Butterfly, Papilio xuthus

  • Kim, Seong-Ryul;Hwang, Jae-Sam;Park, Seung-Won;Goo, Tae-Won;Kim, Ik-Soo;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.2
    • /
    • pp.231-238
    • /
    • 2011
  • Attacin is an insect antibacterial protein that plays an important role in immune response to injury and infection. In this report, we have isolated and characterized of cDNA encoding for the attacin from the immunized larvae of swallowtail butterfly, $Papilio$ $xuthus$. A full length cDNA of $P.$ $xuthus$ attacin was obtained by employing annealing control primer (ACP)-based differential display PCR and 5' RACE. The complete $P.$ $xuthus$ attacin cDNA was comprised of 949 bp encoding a 250 amino acid precursor. It contains a putative 18 amino acid signal peptide sequence, a 42 amino acid propeptide sequence, and a 190 amino acid mature protein with a theoretical molecular mass of 19904.01 and a pI of 9.13. The putative mature protein of $P.$ $xuthus$ attacin showed 48-52% and 24-30% identity in amino acid sequences with that of lepidopteran and dipteran insects, respectively. Semiquantitive RT-PCR results revealed that the transcript of $P.$ $xuthus$ attacin gene was up-regulated at significant levels after injection with bacterial lipopolysaccharide (LPS). We sub-cloned cDNA fragment encoding mature $P.$ $xuthus$ attacin into the expression vector, highly expressed in $E.$ $coli$ BL21 cells, and its antibacterial activity was analyzed. Recombinant $P.$ $xuthus$ attacin evidenced considerably antibacterial activity against Gram-negative bacteria, $E.$ $coli$ ML 35 and $Klebsiella$ $pneumonia$.

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • LEE Mi-Ock;SONG Ki-Hong;LEE Hyun-Kyung;JUNG Ji-Yoon;CHOE Vit-Nary;CHOE Sunghw
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Cloning of the posterior silk glands specific-expressed gene of silkworm (누에 후부실샘 특이 발현 유전자 클로닝)

  • Piao, Yulan;Kim, Seong-Ryul;Kim, Sung-Wan;Kang, Seok-Woo;Goo, Tae-Won;Choi, Kwang-Ho
    • Journal of Sericultural and Entomological Science
    • /
    • v.53 no.1
    • /
    • pp.44-49
    • /
    • 2015
  • We characterized tissue specific-expressed genes in the posterior silk gland of Bombyx mori using by the Annealing Control Primer based differential display-PCR manner. In this study, we isolated 34 differentially expressed PCR amplicons, which one of these was identified as a novel transcript named as ACP-16 (366 bp), its expression was observed only in the posterior silk glands by Northern blot analysis. To determine promoter region of the ACP-16, we isolated and analyzed a phage DNA having 1.7 kb-long genome DNA including the open reading flame and 5'- upstream untranslated region of the ACP-16 gene from a genomic DNA library. We have estimated a promoter region of the ACP-16 gene by a web promoter prediction engine, which locates -750 ~ -165 from translation initiation site (ATG, +1). ACP-16 gene is necessary to more studies about critical biological role in order to apply the silkworm's transgenic system.

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.