• Title/Summary/Keyword: Display Pixel

Search Result 462, Processing Time 0.027 seconds

PM OLED Fabrication with New Method of Metal Cathode Deposition Using Shadow Mask

  • Lee, Ho-Chul;Kang, Seong-Jong;Yi, Jung-Yoon;Kim, Ho-Eoun;Kwon, Oh-June;Hwang, Jo-Il;Kim, Jeong-Moon;Roh, Byeong-Gyu;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.987-989
    • /
    • 2006
  • 1.52" $130(RGB){\times}130$ full color PM OLED device with $70\;{\mu}m{\times}210\;{\mu}m$ of sub-pixel pitch was fabricated using shadow mask method for metal cathode deposition. Instead of conventional patterning process to form cathode separator via photolithography, regularly patterned shadow mask was applied to deposit metal cathode in this OLED display. Metal cathode was patterned via 2-step evaporation using shadow mask with shape of rectangular stripe and its alignment margin is $2.5\;{\mu}m$. Technical advantages of this method include reduction of process time according to skipping over photolithographic process for cathode separator and minimizing pixel shrinkage caused by PR cathode separator as well as improving lifetime of OLED device.

  • PDF

A study on the simplified fabrication structure for the multi-color OLED display

  • Baek, H.I.;Kwon, D.S.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1046-1049
    • /
    • 2006
  • We proposed a simplified fabrication structure and method which can provide separate Red (R), Green (G), Blue (B), and White (W) OLED pixels with 2 metal-mask changes in emitting layer fabrication inspired from the structure of multi-layer white OLED and carrier blocking mechanism. A red emission layer for the R and W pixel with 1st mask, and then a blue emission layer with hole blocking layer for the B and W pixel with 2nd mask, and finally a common green emission layer were deposited sequentially. We expect that this concept would be very useful to the actual fabrication of multi-color OLED display although additional optimization is needed.

  • PDF

2.2 inch QCIF+ Active-Matrix Organic Light-Emitting Diode Display With High Performance and Mass Productive Ability

  • Tsai, Cheng-Hung;Chiu, Chen-Lun;Chen, Cheng-Ming;Shih, I-Cheng;Tang, Shun-Jyun;Huang, Chun-Yao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.799-802
    • /
    • 2005
  • This paper described a 2.2" $QCIF^+$ ($176{\times}RGB{\times}220$) active matrix organic light-emitting diode display (AMOLED) using low-temperature poly-silicon (LTPS) technology. We have designed the OLED pixel to match the OLED material characteristic with COG specification and optimized pixel structure to improve color gamma adjustment and simplify signal complexity.

  • PDF

Optically compensated bend cell with pixel-isolating polymer wall for a flexible display application

  • Lee, Seong-Ryong;Lee, Joong-Ha;Jang, Hong-Jeek;Jo, Jin-Seok;Yoon, Tae-Hoon;Kim, Jae-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.207-210
    • /
    • 2007
  • We fabricated an optically compensated bend cell with pixel-isolating polymer wall. The polymer wall was formed by phase separation of LCs and UVcurable polymer. The fabricated cell had initially ${\pi}-twist$ state. It showed low driving voltage, wide viewing angle and fast response properties. Also, polymer wall provided the mechanical stability preventing distortion of a display image from pressure.

  • PDF

Design of a CMOS On-chip Driver Circuit for Active Matrix Polymer Electroluminescent Displays

  • Lee, Cheon-An;Woo, Dong-Soo;Kwon, Hyuck-In;Yoon, Yong-Jin;Lee, Jong-Duk;Park, Byung-Gook
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • A CMOS driving circuit for active matrix type polymer electroluminescent displays was designed to develop an on-chip microdisplay on the single crystal silicon wafer substrate. The driving circuit is a conventional structure that is composed of the row, column and pixel driving parts. 256 gray scales were implemented using pulse amplitude modulation method. The 2-transistor driving scheme was adopted for the pixel driving part. The layout was carried out considering the compatibility with the standard CMOS process. Judging from the layout of the driving circuit, it turns that it is possible to implement a high-resolution display about 400 ppi resolution. Through the HSPICE simulation, it was verified that this circuit is capable of driving a VGA signal mode display and implementing 256 gray levels.

White OLED and Dual-plate OLED Display

  • Han, Chang-Wook;Pieh, Sung-Hoon;Sung, Chang-Jae;Kim, Hwa-Kyung;Pang, Hee-Suk;Choi, Hong-Seok;Lee, Nam-Yang;Ahn, Byung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.411-414
    • /
    • 2009
  • We report single and two-stacked WOLED. Two-stacked WOLED structure adopts fluorescent blue EML and phosphorescent (red+green) EML. Current efficiency, EQE and color coordinate of two-stacked WOLED are 54.5cd/A, 28.8% and CIExy (0.322, 0.345), respectively. Those of single WOLED are also 20cd/A, 10% and CIExy (0.29, 0.37), respectively. Dual-plate OLED Display (DOD) employing the single WOLED shows high aperture ratio up to 67% in 2-inch panel of which pixel size is equivalent to that of 32 inch Full HD.

  • PDF

Pixel design for Improving Transmittance in OCB LCD

  • Lee, K.C.;Sha, Y.A.;Su, P.J.;Hsieh, C.H.;Chang, K.H.;Hsiao, C.C.;Fuh, S.Y.;Cheng, W.Y.;Liao, Y.C.;Yang, J.C.;Lo, K-L;Lee, D.W.;Chang, Y.P.;Shiu, J.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.395-398
    • /
    • 2007
  • Two new cell structures for optical compensated bend were proposed. There are two groups of slit electrodes, which are driven by two different signals corresponding to the entire electrode as common electrode. The transmittance was enhanced without increasing the response time and light leakage. Compared with the traditional OCB mode, the increment of the transmittance of each kind is about 90% and 30%.

  • PDF

A Study on Graphic Program for 3D Image Display System (실시간3차원 그래픽 프로그램 개발에 관한 연구)

  • 배성찬;권승탁;양연식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.227-230
    • /
    • 2001
  • In this paper, We present a 3D image data for ocular refina. This 3D display techniques are used voxel(cuboid) projection. Voxel is 3D reconstruction method of the pixel. In this paper, 3D image display system is constructed under PC environment and programed based on modular programming by using Visual C++. The hole procedures are composed of data preparation, 3D Display over transformation and scaling.

  • PDF

Electrowetting displays, progression toward large area and high brightness flexible displays

  • Cheng, Wei Yuan;Lo, Kuo Lung;Heikenfeld, Jason
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1337-1340
    • /
    • 2008
  • Since 2006, the Industrial Technology Research Institute and the University of Cincinnati have been jointly exploring approaches for high brightness flexible electrowetting displays (EWDs). Recently, ITRI demonstrated for the $1^{st}$ time a 6" AM-EWD reflective display panel. To create flexible AM-EWDs, Cincinnati has developed low-temperature processing and improved pixel structures.

  • PDF

Development of LED TV Panel Brightness Uniformity Correction System (LED TV 패널 밝기 균일화 보정 시스템 개발)

  • Park, Je Sung;Lee, Won Woo;Jian, Zhangye;Joo, Hyonam;Kim, Joon Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • When Flat Panel Display (FPD) is made with backlight module, such as LED TV, it inherently suffers from the non-uniform backlight luminance problem that results in un-even brightness distribution throughout the TV screen. If the luminance of each pixel location of a TV screen as a function of the driving voltage can be measured, it can be used to compensate the non-uniformity of the backlight module. We use a carefully calibrated imaging system to take pictures of a TV screen at different levels of brightness and generate the compensation functions for the driving circuitry to correct the luminance level at each pixel location. Making use of the fact that the luminance of the screen is normally brightest at around the center of the screen and gradually decreases toward the border of the screen, the luminance of the whole TV screen is approximated by a mathematical function of the pixel locations. The parameters of the function are computed in the least square sense by the values of both the pixel luminance sent from the driving circuit and the grayscale value measured from the image taken by the imaging system. To justify the correction system, a simple second order polynomial function is used to approximate the luminance across the screen. When the driving circuit voltage is corrected according to the measured function, the variance of the screen luminance is reduced to one tenth of the one measured from the un-corrected TV screen.