• 제목/요약/키워드: Display Manufacturing Process

검색결과 384건 처리시간 0.029초

효과적인 디스플레이 제조를 위한 AI/BIG DATA 기반 스마트 팩토리 기술 현황 분석 (AI/BIG DATA-based Smart Factory Technology Status Analysis for Effective Display Manufacturing)

  • 정석원;임헌국
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.471-477
    • /
    • 2021
  • 디스플레이 분야에 스마트 팩토리란 작업 자동화 뿐만 아니라 기존의 공정관리, 이동설비, 공정이상, 결함 분류 등에 AI/BIG DATA 기술을 이용한 보다 효율적인 디스플레이 제조를 의미한다. 과거 디스플레이 제조 과정에서 불량이 나오면 결함 분류, 공정 이상에 대한 대처가 시시각각 달랐기 때문에 이에 대한 많은 시간 소모가 발생했었다. 하지만 디스플레이 제조 분야는 고도화된 공정 장비를 이용해야 하고 불량 원인을 신속하게 파악해 수율을 올리는 것이 디스플레이 제조 산업의 경쟁력이다. 본 논문에는 스마트 팩토리 AI/BIG DATA 기술을 디스플레이 제조에 접목한 사례들에 대해 정리해 보고 기존 방법 대비 어떤 장점이 도출 되어질 수 있는지에 대해 처음으로 분석해 보고자 한다. 이를 통해 향후 AI/BIG DATA를 이용한 디스플레이 제조 분야에 보다 향상된 스마트 팩토리 개발을 위한 사전지식으로 활용하고자 한다.

주성분 분석을 이용한 고객 공정의 불량률 예측 모형 개발 (Development of Prediction Model using PCA for the Failure Rate at the Client's Manufacturing Process)

  • 장윤희;손지욱;이동혁;오창석;이득중;장중순
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권2호
    • /
    • pp.98-103
    • /
    • 2016
  • Purpose: The purpose of this paper is to get a meaningful information for improving manufacturing quality of the products before they are produced in client's manufacturing process. Methods: A variety of data mining techniques have been being used for wide range of industries from process data in manufacturing factories for quality improvement. One application of those is to get meaningful information from process data in manufacturing factories for quality improvement. In this paper, the failure rate at client's manufacturing process is predicted by using the parameters of the characteristics of the product based on PCA (Principle Component Analysis) and regression analysis. Results: Through a case study, we proposed the predicting methodology and regression model. The proposed model is verified through comparing the failure rates of actual data and the estimated value. Conclusion: This study can provide the guidance for predicting the failure rate on the manufacturing process. And the manufacturers can prevent the defects by confirming the factor which affects the failure rate.

Inkjet Technology and Products for Flexible Display Manufacturing

  • Schoeppler, Martin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.179-181
    • /
    • 2008
  • Major display equipment suppliers introduced equipment using inkjets for manufacturing steps such as printing polyimide alignment layers and color filters. This paper discusses how inkjets can be used in the development of flexible displays and materials printing systems designed to meet the challenges of fluids and process development.

  • PDF

Recent progress of Ergonomics Studying in CRTs Design and Manufacturing

  • Wu, Mingli;Duan, Cheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.450-452
    • /
    • 2004
  • This paper analyzes some important achievements in Ergonomics field in CRT industry. After introducing principal regulatory requirements for CRTs, including ISO 9241 and TCO standards, the paper indicates some theoretical research in ergonomics of the display devices, such as new contrast parameter for appraising the display devices and effects of environment on visual performance at the ergonomic. Then, as the pivot of this paper, some practical progress, in the ergonomics field in CRT manufacturing , are described, such as vacuum sputtering process for advanced CRTs, new developed wet process for getting the multi-coating layers on surface of the panel.

  • PDF

Precision Industrial Ink Jet Printing Technology for Full Color PLED Display Manufacturing

  • Edwards, Chuck;Bennett, Richard;Lee, Jueng-Gil;Silz, Kenneth
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.141-143
    • /
    • 2002
  • Litrex Ink Jet equipment offers prospect for reliable and low cost manufacturing process for PLED technology. The design concept of 140P system that we are developing meets requirement of process/equipment for PLED manufacturing line in terms of higher mechanical accuracy, in-line monitoring system of print head, high precision of process capability, reasonable through-put, high reliability/easier maintenance and no particle generation.

  • PDF

화상처리를 이용한 OLED 디스플레이의 픽셀 불량 검사에 관한 연구 (Defect Inspection of the Pixels in OLED Type Display Device by Image Processing)

  • 박경석;신동원
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.25-31
    • /
    • 2009
  • The image processing methods are widely used in many industrial fields to detect defections in inspection devices. In this study an image processing method was conducted for the detection of abnormal pixels in a OLED(Organic Light Emitting Diode) type panel which is used for small size displays. The display quality of an OLED device is dependent on the pixel formation quality. So, among the so many pixels, to find out the faulty pixels is very important task in manufacturing processing or inspection division. We used a line scanning type BW(Black & White) camera which has very high resolution characteristics to acquire an image of display pixel patterns. And the various faulty cases in pixel abnormal patterns are considered to detect abnormal pixels. From the results of the research, the normal BW pixel image could be restored to its original color pixel.

  • PDF

스마트제조시스템의 설비인자 분석 (Analysis of Equipment Factor for Smart Manufacturing System)

  • 안재준;심현식
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.168-173
    • /
    • 2022
  • As the function of a product is advanced and the process is refined, the yield in the fine manufacturing process becomes an important variable that determines the cost and quality of the product. Since a fine manufacturing process generally produces a product through many steps, it is difficult to find which process or equipment has a defect, and thus it is practically difficult to ensure a high yield. This paper presents the system architecture of how to build a smart manufacturing system to analyze the big data of the manufacturing plant, and the equipment factor analysis methodology to increase the yield of products in the smart manufacturing system. In order to improve the yield of the product, it is necessary to analyze the defect factor that causes the low yield among the numerous factors of the equipment, and find and manage the equipment factor that affects the defect factor. This study analyzed the key factors of abnormal equipment that affect the yield of products in the manufacturing process using the data mining technique. Eventually, a methodology for finding key factors of abnormal equipment that directly affect the yield of products in smart manufacturing systems is presented. The methodology presented in this study was applied to the actual manufacturing plant to confirm the effect of key factors of important facilities on yield.

LCD 제조공정에서 사용되는 화학물질의 종류 및 특성 (Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process)

  • 박승현;박해동;노지원
    • 한국산업보건학회지
    • /
    • 제29권3호
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

대기압 플라즈마 설비 개발 및 Flip Chip BGA 제조공정 적용 (Development of Atmospheric Pressure Plasma Equipment and It's Application to Flip Chip BGA Manufacturing Process)

  • 이기석;유선중
    • 반도체디스플레이기술학회지
    • /
    • 제8권2호
    • /
    • pp.15-21
    • /
    • 2009
  • Atmospheric pressure plasma equipment was successfully applied to the flip chip BGA manufacturing process to improve the uniformity of flux printing process. The problem was characterized as shrinkage of the printed flux layer due to insufficient surface energy of the flip chip BGA substrate. To improve the hydrophilic characteristics of the flip chip BGA substrate, remote DBD type atmospheric pressure plasma equipment was developed and adapted to the flux print process. The equipment enhanced the surface energy of the substrate to reasonable level and made the flux be distributed over the entire flip chip BGA substrate uniformly. This research was the first adaptation of the atmospheric pressure plasma equipment to the flip chip BGA manufacturing process and a lot of possible applications are supposed to be extended to other PCB manufacturing processes such as organic cleaning, etc.

  • PDF

Technical Challenges for Polymer OLED Display Manufacturing

  • Lee, James Jueng-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1163-1167
    • /
    • 2008
  • Since Samsung SDI and Sony started mass production of AM-OLED display for mobile/TV applications, OLED technology has emerged as leading candidate among the many technologies under development for next generation Flat panel displays. P-OLED (Polymer Organic Lighting Emitting Diode) technology, a class of OLED, is gathering momentum towards commercialization. P-OLED technology has made tremendous progress in terms of display performance (including life time, efficiency and color gamut) and in the maturity of ink jet printing process and equipment. In order to get into the mobile/TV application market successfully, P-OLED display technology must meet the following display makers' requirements: (1) P-OLED Display Performance in terms of lifetime, efficiency, and color coordinates, (2) Low Cost Manufacturing Technology such as "Solution Processable Printing Technology". P-OLED technology has already overcome many of the hurdles to mass manufacturing. In this paper, the latest developments in ink jet printing technology, including P-OLED material performance, is discussed.

  • PDF