• 제목/요약/키워드: Displacements

검색결과 2,673건 처리시간 0.028초

Behavior of wall panels in industrial buildings caused by differential settlements

  • Fernandez, Suyai;Jaca, Rossana C.;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.443-460
    • /
    • 2015
  • This paper presents the analysis of mechanical behavior of metal wall panels of storehouses and industrial buildings subjected to differential settlements. The storehouses considered are representative of those used in the agricultural activity. A small-scale model was built and tested in order to have evidence of the behavior and to validate computational models. The numerical investigation is carried out through finite element analysis using a general-purpose software, by modeling buildings with different geometries and evaluating different settlements of the ground. To obtain an adequate model, geometric non-linearity has to be taken into account. Models that represent the most usual geometric typologies were investigated under support settlements. The deflected shape of the wall panel and the relationship between the horizontal displacements and the settlement of the foundations are evaluated. The results show that there are large out-of-plane displacements caused by settlements that would be admitted by design recommendations.

An iteration approach for multiple notch problem based on complex variable boundary integral equation

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.591-604
    • /
    • 2012
  • This paper provides an iteration approach for the solution of multiple notch problem, which is based on the complex variable boundary integral equation (CVBIE). The contours of notches are applied by some loadings. The source points are assumed on the boundary of individual notch and the displacements along the boundaries become unknowns to be investigated. After discretization of the BIE, many influence matrices are obtained. One does not need to assemble many influence matrices into a larger matrix. This will considerably reduce the work in the program. The displacements along the many boundaries can be obtained from an iteration. There is no limitation for the configuration of notches. Several numerical examples are provided to prove the efficiency of the suggested approach.

Dynamics of multilayered viscoelastic beams

  • Roy, H.;Dutt, J.K.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.391-406
    • /
    • 2009
  • Viscoelastic materials store as well as dissipate energy to the thermal domain under deformation. Two efficient modelling techniques reported in literature use coupled (thermo-mechanical) ATF (Augmenting Thermodynamic Fields) displacements and ADF (Anelastic Displacement Fields) displacements, to represent the constitutive relationship in time domain by using certain viscoelastic parameters. Viscoelastic parameters are first extracted from the storage modulus and loss factor normally reported in hand books with the help of Genetic Algorithm and then constitutive relationships are used to obtain the equations of motion of the continuum after discretizing it with finite beam elements. The equations of motion are solved to get the frequency response function and modal damping ratio. The process may be applied to study the dynamic behaviour of composite beams and rotors comprising of several viscoelastic layers. Dynamic behaviour of a composite beam, formed by concentric layers of steel and aluminium is studied as an example.

Structural matrices of a curved-beam element

  • Gimena, F.N.;Gonzaga, P.;Gimena, L.
    • Structural Engineering and Mechanics
    • /
    • 제33권3호
    • /
    • pp.307-323
    • /
    • 2009
  • This article presents the differential system that governs the mechanical behaviour of a curved-beam element, with varying cross-section area, subjected to generalized load. This system is solved by an exact procedure or by the application of a new numerical recurrence scheme relating the internal forces and displacements at the two end-points of an increase in its centroid-line. This solution has a transfer matrix structure. Both the stiffness matrix and the equivalent load vector are obtained arranging the transfer matrix. New structural matrices have been defined, which permit to determine directly the unknown values of internal forces and displacements at the two supported ends of the curved-beam element. Examples are included for verification.

비선형전좌굴을 고려한 복합적층원통셸의 좌굴해석 (Buckling Analysis of Laminated Composite Cylindrical Shells with Nonlinear Prebuckling)

  • 원종진;이종선
    • 한국자동차공학회논문집
    • /
    • 제2권3호
    • /
    • pp.13-20
    • /
    • 1994
  • The effects of prebuckling on the buckling of laminated composite cylindrical shells are investigated. Both axial compression and lateral pressure are considered for laminated composite cylindrical shells with length to radius ratios usually associated with container vessels. The shell walls are made of a laminate with several symmetric ply orientations. The study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when prebuckling displacements are neglected.

  • PDF

Aggregate Gradation Effects on Cracking-Related Displacements in Concrete Pavement

  • 정지훈;김낙석
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.631-635
    • /
    • 2005
  • Aggregate gradation effects on cracking-related displacements of concrete are investigated in the laboratory using the German cracking frame. Concrete workability was assessed by use of the slump and drop tests for two different concrete mixtures consisting of gap-graded and dense-graded aggregates. Shrinkage strain, cracking frame strain, and concrete strain were measured and used to compare to strength gain and creep development. The measured and calculated strains of the different aggregate gradations were compared each other. Gradation effects on strength and stress development relative to tensile cracking at saw-cut tip were also investigated. Test results revealed that the gap-graded concrete has indicated larger shrinkage and creep strains than dense-grade concrete perhaps because of its higher volume concrete of cement mortars in the mixture.

Two collinear Mode-I cracks in piezoelectric/piezomagnetic materials

  • Zhou, Zhen-Gong;Wang, Jia-Zhi;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.55-75
    • /
    • 2008
  • In this paper, the behavior of two collinear Mode-I cracks in piezoelectric/piezomagnetic materials subjected to a uniform tension loading was investigated by the generalized Almansi's theorem. Through the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations, in which the unknown variables were the jumps of displacements across the crack surfaces. To solve the triple integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials to obtain the relations among the electric displacement intensity factors, the magnetic flux intensity factors and the stress intensity factors at the crack tips. The interaction of two collinear cracks was also discussed in the present paper.

A Case Study on the Effect of Damaged Expansion Joint for Safety Assessment of Highway Bridges

  • Kim, Kwang-Il;Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun
    • International Journal of Safety
    • /
    • 제9권2호
    • /
    • pp.16-21
    • /
    • 2010
  • In this study, the variations of transformed impact factors and load carrying capacity of highway bridges measured from the state of expansion joint are evaluated. the field loading tests were performed on the highway bridge with damaged expansion joint to investigate the variation of the load carrying capacity. From the field loading tests in case that damaged expansion joint exist or do not exist, the static displacements and dynamic displacements were measured, and TIF were calculated, respectively. dynamic test is performed in order to estimate dynamic displacement and TIF according to the level of damage of expansion joint. From the results of TIF, the load carrying capacity of highway bridges with damaged expansion joint were estimated.

비선형 회전 스프링 요소를 갖는 공간 프레임의 구조의 비선형 해석에 관한 연구 (A study on the nonlinear analysis of spatial frame structures with nonlinear rotational spring elements)

  • 이병채;박문식
    • 오토저널
    • /
    • 제12권2호
    • /
    • pp.29-42
    • /
    • 1990
  • Three dimensional frame structures with such nonlinearities as large displacements, medium rotations, plastic hinges and local defects are efficiently analyzed by introducing the nonlinear rotational spring. Formulations are based on the incremental updated Lagrangian descriptions and the virtual work principle, Axial displacement and twisted angle in beam elements are interpolated linearly, while bending displacements are approximated by the Hermite polynomials. The modified are length method is used as a solution method. The moment-angle of rotation relationship obtained analytically or experimentally can be easily incorporated into the solution procedure. Several examples tested show that the present method can be used efficiently in analyzing nonlinear frame structures with plastic hinges or local defect.

  • PDF

현가계 컴플라이언스 특성의 최적 설계에 관한 연구 (A Study on the Optimum Design of Compliance Characteristics of Suspension System)

  • 이장무;강주석;탁태오;윤종욱
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.88-97
    • /
    • 1998
  • Compliance elements such as bushings of a suspension system play a crucial role in determining the ride and handling characteristics of the vehicle. In this paper, a general procedure is proposed for the optimum design of compliance elements to meet various design targets. Based on the assumption that the displacements of elastokinematic behavior of a suspension system under external forces are very small, linearized elastokinematic equations in terms of infinitesimal displacements and joint reaction forces are derived. Directly differentiating the linear elastokinematic equations with respect to design variables associated with bushing stiffness, sensitivity equations are obtained. The design process for determining the bushing stiffness using sensitivity analysis and optimization technique is demonstrated.

  • PDF