• Title/Summary/Keyword: Displacements

Search Result 2,673, Processing Time 0.031 seconds

A Study on the Design of Functional Clothing for Vital sign Monitoring -Based on ECG Sensing Clothing- (생체신호 측정을 위한 기능성 의류의 디자인 연구 -심전도 센싱 의류를 중심으로-)

  • Cho, Ha-Kyung;Song, Ha-Young;Cho, Hyeon-Seong;Goo, Su-Min;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.13 no.3
    • /
    • pp.467-474
    • /
    • 2010
  • Recently, Study of functional clothing for Vital sensing is focused on reducing artifact by human motions, in order to enhance the electrocardiogram(ECG) sensing accuracy. In this study, considering the factors for each element found from the analysis, a 3-lead electrode inside textile embroidered with silver yarn was developed, and draft designs off our types of vital-signal sensing garments, which are 'chest-belt typed' garment, 'cross-typed' garment 'x-typed' garment and 'curved x-typed' garment, were prepared. The draft designs were implemented on a sleeveless male shirt made of an elastic material so that the garment and the electrodes can remain closely attached along the contour of the human body, and the acquired data was sent to the main computer over a wireless network. In order to evaluate the effects caused by body movements and the ECG-sensing capability for each type in static and dynamic states, displacements were measured from one and two dimensional perspectives. ECG measurement evaluation was also performed for Signal-to-noise ratio(SNR) analysis. Applying the experimental results, the draft garment designs were modified and complemented to produce two types of modular approaches 'continuous-attached' and 'insertion-detached' for the ECG-sensing smart clothing.

  • PDF

Effects of Cooling on Repeated Muscle Contractions and Tendon Structures in Human (냉각이 반복된 근수축과 사람의 건 구조에 미치는 영향)

  • Chae, Su-Dong;Jung, Myeong-Soo;Horii, Akira
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.6
    • /
    • pp.1-11
    • /
    • 2006
  • Purpose: This study compared the effects of non-cold and cold conditions on the viscoelastic properties of tendon structures in vivo. Methods: Seven male subjects perfomed plantar flesion exercise with maximal isokinetic voluntary contraction, which consisted of muscle contraction for 6 see and relaxation for 60 secs, 10 times for 1 set, Totally 10 sets were repeated. Before and after each task, the elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured by ultrasonography. (The relationship between the estimated tendon force and tendon elongation.) Tendon cross-sectional area and ankle joint moment arm were obtained from magnetic resonance imaging (MRI). The tendon force was calculated from the joint moments and the tendon moment arm and stress was obtained by dividing force by cross-sectional areas (CSA). The strain was measured from the displacements normalized to tendon length. Results: After cooling, the tendon force was larger in cold than non-cold. The value of the tendon stiffness of MVC were significantly higher under the cold condition than under the non-cold condition. The maximal strain and stress of $7.4{\pm}0.7%$ and $36.4{\pm}1.8$ MPa in non-cold and $7.8{\pm}8.5%,\;31.8{\pm}1.1$ MPa in cold (P<0.05). Conclusion: This study shows for the first time that the muscle endurance in cooling increases the stiffness and Young's modulus of human tendons. The improvement in muscle endurance with cooling was directly related to muscle and tendon.

  • PDF

Study on the Estimation of Safety Zone and the Movement of Ground at the Inter-Crossing Tunnel (교차터널에서의 지반거동 및 안전영역평가에 관한 연구)

  • Kim, Woo-Sung;Yoo, Dong-Uk;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.491-502
    • /
    • 2008
  • A certain range of the original ground around the tunnel should be preserved to ensure structural safety of the tunnel when other structures are made around the tunnel, and thus this range is defined as safety zone of the tunnel. The main points to ensure the stability of an existing tunnel when constructing a new tunnel in an inter-crossing area are distance between two tunnels, size of the new tunnel, excavation method for the new tunnel, ground condition around the tunnel, and lining type of the existing tunnel etc. When the new tunnel is excavated above the existing tunnel, the existing tunnel is likely to suffer deformation at a crown zone, damage of arching effect, and live load of the new tunnel etc. On the other hand, when the new tunnel is excavated below the existing tunnel, the existing tunnel is likely to be damaged due to settlement. This study has been made on the behavior of the existing tunnel by means of model test and numerical analysis when the new tunnel is excavated below the existing tunnel. Safety zone of the tunnel was estimated by the results of strength/stress ratio obtained from numerical analysis, and the movement of ground was estimated by the model test. The results of earth pressure, ground displacements, and convergence of the tunnel obtained from model test were compared with those of numerical analysis, and show a similar trend.

A Study on the Numerical Analysis of A NATM Tunnel with Consideration of Construction Procedure and Field Measurement (시공과정 및 현장계측을 고려한 NATM 터널의 수치해석적 연구)

  • Park, Choon-Sik;Kang, Man-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • In order to investigate the tendency of general displacements and behaviors with respect to each construction process as well as the applicability of numerical analysis schemes, this research has focused on not only analyzing a variety of field observations made in a NATM tunnel, such as displacement of top and side, stress of shotcrete and axial strength of rock bolt, but also carrying out a series of numerical analyses. It was established from the investigation that the 2-dimensional continuum numerical analysis was the one which could more accurately predict displacement of crown and side in the area of one step excavation (patten, P1-P3), while the 2-dimensional discontinuum analysis was the most suitable scheme to study that of two step excavation (patten, P4-P6). In addition, the 2-dimensional continuum analysis enabled to appropriately predict the axial strength of rock bolt and stress of shotcrete in all the area of the tunnel. Finally, it has been possible to conclude from the study that the 3-dimensional continuum analysis should be applied to inspect the behavior and tendency with respect to each stage of the construction as well as in the case of joints, such as large turnouts where relaxation loads in both of horizontal and vertical direction are piled up.

Comparative Analysis of Open- Spike between Excellent and Non-excellent Players in Volleyball (배구 우수선수와 비우수선수간의 오픈 스파이크 동작의 비교 분석)

  • Kim, Chang-Bum;Kim, Young-Suk;Shin, Jun-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.253-264
    • /
    • 2003
  • This study aims at finding the structure of spike technique by analysing comparatively the spike action by excellent and by non-excellent players throughout the section from a flying jump to the time of landing for the correct analysis of spike action and tries to help athletes and coaches to execute a scientific training. For the objected person of this study, six of H College athletes three of excellent athletes and three of non-excellent athletes, presently registered as athlete with the Korea Volleyball federation) were chosen, and the factors of analysis were analysed upon performance time of action by section, human body centered displacement, change of articulation angle, speed change of articulation of the upper limbs, uniformity of the articulation of the upper limbs upon impact, etc. The conclusion of this study is as follow: 1. In the time required for taking action, it shows to take $1.067{\pm}0.057$ seconds for the group of excellent athletes and $1.034{\pm}0.033$ seconds for the group of non-excellent athletes. Although there was not big difference between two groups in the performance time of action, it showed that the group of excellent athletes takes longer compared to the group of non-excellent athletes. And it was found by the result of this study that the group of excellent athletes stays longer in the duration of flight. 2. In the displacements of horizontal movement and vertical movement, it was found that the group of excellent athletes have moved more than the group of non-excellent athletes in the horizontal movement of the center of human body 3. In the angles of wrist and knee, it was found that the excellent athletes have shown little than the non-excellent athletes in the entire sections, but that in the angle of elbow, the non-excellent athletes have shown bigger than the excellent athletes.. 4. In the speed of the articulation of the upper limbs upon impact, it was found that the group of excellent athletes have shown bigger than the group of non-excellent athletes, and that in the maximum value of the articulation of the upper limbs, the maximum value for the hand was indicated upon impact and that forearm and upper arm have shown the maximum value just before the impact. 5. In the uniformity of articulation of the upper limbs at the time of impact, the group of excellent athletes showed bigger than the group of non-excellent athletes in all the articulations.

Analysis of Lateral Behavior of Offshore Wind Turbine Monopile Foundation in Sandy Soil (사질토에 근입된 해상풍력 모노파일 기초의 횡방향 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Kwak, Yeon Min;Park, Jae Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.421-430
    • /
    • 2013
  • To predict behaviors of offshore wind turbines which are highly laterally loaded structures and to design them rationally, evaluating the soil-foundation interaction is important. Nowadays, there are many soil modeling methods for structural analysis of general structures subjected to vertical loads, but using the methods without any consideration for design of a monopile foundation is eschewed because it might cause wrong structural design due to the deferent loading state. In this paper, we identify the differences of the member forces and displacements by design methods. The results show that fixed end method is barely suitable for monopile design in terms of checking the serviceability because it underestimate the lateral displacement. Fixed end method and stiffness matrix method underestimate the member forces, whereas virtual fixed end method overestimates them. The results of p-y curve method and coefficient of subgrade reaction method are similar to the results of 3D soil modeling method, and 2D soil modeling method overestimates the displacement and member forces as compared with other methods.

Set-up errors in head and neck cancer treated with IMRT technique assessed by cone-beam computed tomography: a feasible protocol

  • Delishaj, Durim;Ursino, Stefano;Pasqualetti, Francesco;Matteucci, Fabrizio;Cristaudo, Agostino;Soatti, Carlo Pietro;Barcellini, Amelia;Paiar, Fabiola
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Purpose: To investigate set-up errors, suggest the adequate planning target volume (PTV) margin and image-guided radiotherapy frequency in head and neck (H&N) cancer treated with intensity-modulated radiotherapy (IMRT) assessed by kV cone-beam computed tomography (CBCT). Methods: We analyzed 360 CBCTs in 60 patients with H&N cancer treated with IMRT. The target delineation was contoured according to ICRU62. PTVs were generated by adding a 3-5 mm margin in all directions to the respective clinical target volumes. The kV CBCT images were obtained at first three days of irradiation and weekly thereafter. The overall mean displacement, range, systematic (${\Sigma}$) and random (${\sigma}$) errors were calculated. Adequate PTV margins were calculated according to the van Herk formula ($2.5{\Sigma}+0.7r$). Results: The mean of set-up errors was less than 2 mm in any direction. The overall frequency of set-up displacements greater than 3 mm was 3.9% in medial-lateral (ML) direction, 8% in superior-inferior (SI) direction, and 15.5% in anterior-posterior (AP) direction. The range of translations shifts was 0-9 mm in ML direction, 0-5 mm in SI direction and 0-10 mm in AP direction, respectively. After systematic set-up errors correction, the adequate margin to overcome the problem of set-up errors was found to be less than 3 mm. Conclusion: Image-guided kV CBCT was effective for the evaluation of set-up accuracy in H&N cancer. The kV CBCT at first three fractions and followed-by weekly appears adequate for reducing significantly set-up errors in H&N cancer treated with IMRT technique. Finally, 3-5 mm PTV margins appear adequate and safe to overcome the problem of set-up errors.

Functional Evaluation after Arthroscopic Reconstruction in Isolated and Combined Injury of Posterior Cruciate Ligament (후방십자인대의 단독 및 동반 손상에서 관절경적 재건술 후 기능적 평가)

  • Lee Kwang-Won;Lee Seung-Hun;Park Jae-Guk;Kim Ha-Yong;Kim Byung-Sung;Choy Won-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.6 no.2
    • /
    • pp.115-120
    • /
    • 2002
  • Purpose : To compare the functional evaluation with the posterior translation after arthroscopic PCL reconstruction in isolated and combined PCL-deficient knees. Materials and Methods : We retrospectively evaluated 45 patients with PCL-deficient knees who were treated by arthroscopic PCL reconstruction using Achilles tendon allograft from June 1994 to June 2000. The differences of posterior translation were measured with posterior stress lateral radiographs and KT-2000 arthrometer. The functional results were evaluated using the Lysholm knee score and IKDC evaluation form. Results : Preoperative mean side to side differences of the posterior translation were 11.83 mm in isolated PCL-deficient knees and 12.7 mm in combined PCL-deficient knees respectively. At the last follow-up in isolated and combined PCL-deficient knees, the mean radiographic side to side differences of the posterior translation were 6.38 mm and 6.7 mm, the average corrected 20 Ib posterior displacements using KT-2000 arthrometer were 3.5 mm and 4.1 mm, the mean Lysholm score were 87.4 and 81.2, the grade A and B of IKDC evaluation form were 16 cases $(88.9\%)$ and 23 cases $(85.2\%)$, respectively. Conclusion : The functional results had no relationship with the degree of posterior translation after arthroscopic PCL reconstruction. Tendency of posterior translation may be influenced by associated injury of the knee.

  • PDF

Overview of new developments in satellite geophysics in 'Earth system' research

  • Moon Wooil M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.3-17
    • /
    • 2004
  • Space-borne Earth observation technique is one of the most cost effective and rapidly advancing Earth science research tools today and the potential field and micro-wave radar applications have been leading the discipline. The traditional optical imaging systems including the well known Landsat, NOAA - AVHRR, SPOT, and IKONOS have steadily improved spatial imaging resolution but increasing cloud covers have the major deterrent. The new Earth observation satellites ENVISAT (launched on March 1 2002, specifically for Earth environment observation), ALOS (planned for launching in 2004 - 2005 period and ALOS stands for Advanced Land Observation Satellite), and RADARSAT-II (planned for launching in 2005) all have synthetic aperture radar (SAR) onboard, which all have partial or fully polarimetric imaging capabilities. These new types of polarimetric imaging radars with repeat orbit interferometric capabilities are opening up completely new possibilities in Earth system science research, in addition to the radar altimeter and scatterometer. The main advantage of a SAR system is the all weather imaging capability without Sun light and the newly developed interferometric capabilities, utilizing the phase information in SAR data further extends the observation capabilities of directional surface covers and neotectonic surface displacements. In addition, if one can utilize the newly available multiple frequency polarimetric information, the new generation of space-borne SAR systems is the future research tool for Earth observation and global environmental change monitoring. The potential field strength decreases as a function of the inverse square of the distance between the source and the observation point and geophysicists have traditionally been reluctant to make the potential field observation from any space-borne platforms. However, there have recently been a number of potential field missions such as ASTRID-2, Orsted, CHAMP, GRACE, GOCE. Of course these satellite sensors are most effective for low spatial resolution applications. For similar objects, AMPERE and NPOESS are being planned by the United States and France. The Earth science disciplines which utilize space-borne platforms most are the astronomy and atmospheric science. However in this talk we will focus our discussion on the solid Earth and physical oceanographic applications. The geodynamic applications actively being investigated from various space-borne platforms geological mapping, earthquake and volcano .elated tectonic deformation, generation of p.ecise digital elevation model (DEM), development of multi-temporal differential cross-track SAR interferometry, sea surface wind measurement, tidal flat geomorphology, sea surface wave dynamics, internal waves and high latitude cryogenics including sea ice problems.

  • PDF

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.