• Title/Summary/Keyword: Displacement meter

Search Result 89, Processing Time 0.032 seconds

Dilatation characteristics of the coals with outburst proneness under cyclic loading conditions and the relevant applications

  • Li, Yangyang;Zhang, Shichuan;Zhang, Baoliang
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.459-466
    • /
    • 2018
  • By conducting uniaxial loading cycle tests on the coal rock with outburst proneness, the dilatation characteristics at different loading rates were investigated. Under uniaxial loading and unloading, the lateral deformation of coal rock increased obviously before failure, leading to coal dilatation. Moreover, the post-unloading recovery of the lateral deformation was rather small, suggesting the onset of an accelerated failure. As the loading rate increased further, the ratio of the stress at the dilatation critical point to peak-intensity increased gradually, and the pre-peak volumetric deformation decreased with more severe post-peak damage. Based on the laboratory test results, the lateral deformation of the coals at different depths in the #1302 isolated coal pillars, Yangcheng Coal Mine, was monitored using wall rock displacement meter. The field monitoring result indicates that the coal lateral displacement went through various distinct stages: the lateral displacement of the coals at the depth of 2-6 m went through an "initial increase-stabilize-step up-plateau" series. When the coal wall of the working face was 24-18 m away from the measuring point, the coals in this region entered the accelerated failure stage; as the working face continued advancing, the lateral displacement of the coals at the depth over 6 m increased steadily, i.e., the coals in this region were in the stable failure stage.

Development and Application of Slime Meter for Evaluation of Slime Thickness in Borehole (굴착공 내 슬라임 두께 평가를 위한 슬라임미터의 개발 및 적용)

  • Hong, Won-Taek;Woo, Gyuseong;Lee, Jong-Sub;Song, Myung Jun;Lim, Daesung;Park, Min-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.29-38
    • /
    • 2018
  • The slime formed at the bottom of the borehole causes the excessive displacement and loss of the bearing capacity of the drilled shaft. In this study, the slime meter is developed for the evaluation of the slime based on the electrical properties of the fluid and the slime in the borehole. The slime meter is composed of a probe instrumented with electrodes and temperature sensor and a frame with rotary encoder, so that the slime meter profiles the electrical resistivity compensated with temperature effect along the depth. For the application of the slime meter, three field tests are conducted at a borehole with a diameter of 3 m and a depth of 46.9 m with different testing time and locations. For all the tests, the experimental results show that while electrical resistivities are constantly measured in the fluid, the electrical resistivities sharply increase at the surface of the slime. Therefore, the slime thicknesses are estimated by the differences in the depths of the slime surface and the ground excavation. The experimental results obtained at the same testing point with different testing time show that the estimated thickness of the slime increases by the elapsed time. Also, the estimated slime at the side of the borehole is thicker than that at the center of the borehole. As the slime meter estimates the slime in the borehole by measuring the electrical resistivity with simple equipment, the slime meter may be effectively used for the evaluation of the slime formed at the bottom of the borehole.

Analyses of Micromachinning Processes for Microaccelecrometer Sensors Based on Electrostatic Forces (정전기력을 이용한 마이크로가속도계 센서의 마이크로머시닝 공정해석)

  • 김옥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.579-584
    • /
    • 2000
  • Single crystal silicon (SCS) is used in a variety of microsensor applications in which stresses and other mechanical effects may dominate device performance. The authers model temperature dependent mechnical properties during focused io beam(FIB) cutting and Pt deposition processes. In microaccelero-meter manufacturing process, this paper intend to find thermal displacement change of the temperature by tunnel gap, additional beam part and pt deposition. The thermal analysis intend to use ANSYS V5.5.3.

  • PDF

A Study on the Behavior during Constructing of Rigid Reinforced Roadbed to apply for the Slab Track (콘크리트궤도용 강성보강노반의 시공 중 거동에 관한 연구)

  • Kim, Ki-Hwan;Kim, Dae-Sang;Park, Seong-Yong;Park, Jong-Sik;Yoo, Chung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1774-1785
    • /
    • 2011
  • In this paper, Rigid Reinforced Roadbed(RRR) which is expected to have highly applicability to railroad roadbed, was introduced and field tests results were analyzed. Full scale model with 5m height concerning a single track railroad roadbed was constructed. The model had four different sections, which was to assess the effect of geogrid length, spacing, and connection method on deformation characteristics of RRR. Laser displacement meter, earth pressure cell, piezometer, and strain gauge were installed in order to analyze the behavior of reinforced embankment during construction. Horizontal displacements caused by compaction at each section were 20~30% below the displacement limit that of general reinforced retaining wall, which showed that RRR was very stable structure. Maximum tensile strength of reinforcement was withing 10% of the long-term design strength.

  • PDF

Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses

  • Hou, Xiaoyan;Lee, Heow Pueh;Ong, Chong Jin;Lim, Siak Piang
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.357-370
    • /
    • 2016
  • This paper aims to examine the dynamic response of a newly designed ultrasonic motor under half-sine shock impulses. Impact shock was applied to the motor along x, y or z axis respectively with different pulse widths to check the sensitivity of the motor to the shocks in different directions. Finite Element Analysis (FEA) with the ANSYS software was conducted to obtain the relative displacement of a key point of the motor. Numerical results show that the maximum relative displacement is of micro meter level and the maximum stress is five orders smaller than the Young's modulus of the piezo material, which proves the robustness of the motor.

Absolute Evaluation of Inductor Using Current Transformer Comparator (전류변성기 비교기를 이용한 인덕터의 절대 평가)

  • Kim, Yoon-Hyoung;Jung, Jae-Kap;Han, Sang-Gil;Kim, Han-Jun;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • We have developed two absolute evaluation technology of inductor using current transformer (CT) comparator. One is the method that the reactance of inductor is obtained by analysing the equivalent circuit of CT with inductor connected to series at secondary terminal of CT. The other is the method that the reactance of inductor is obtained by comparing phase displacement of current flowing on inductor by using CT comparator. These technologies have the advantage to apply up to rated current and voltage of inductor. The method was applied to inductors under test in the range of $100 {\mu}H{\sim}1\;H$. The inductance of the inductor under test obtained in this study are consistent with those measured by LCR meter using the same inductor within an expanded uncertainty (k = 2) in the overall range of inductance.

Fabrication of a Micro actuator with p+ Si cantilevers for Optical Devices (p+ Si 외팔보 구조를 이용한 광학 소자용 마이크로 구동기)

  • Park, Tae-Gyu;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2236-2238
    • /
    • 2000
  • The paper represents the fabrication of an electrostatic micro actuator for optical devices. The micro actuator consists of a plate suspended four p+ silicon cantilevers and an electrode on a glass substrate. The cantilever curls down because of the residual stress gradient in p+ silicon. When input voltage is applied between the p+ cantilevers and the electrode. the cantilevers are pulled toward the electrode by the electrostatic force. The displacement of the plate is measured with a laser displacement meter for various input voltage and frequencies.

  • PDF

Safety Evaluation Methods for design of the baseball helmet (야구용 헬멧의 안전성 평가 방법)

  • 최경임
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • In order to protect the head, baseball helmet must to have proper strength and to absorb the kinetic energy. The purposes of this study are to validate whether the helmet have the protecting ability or not. We performed three kinds of experiment to know about the this ability. To find out the limit of displacement at 4 points(front, rear, right side, and left side), the static load by magnetic dial gauges were used, and to validate the ability of absorption, drop tests were peformed from 0.5 and 1.0 meter. Futhermore, we calculated natural frequency of the helmets by the principle of Lissajous Diagram and we performed FEM(Finite Element Method) analysis. From the results of these experiments, we found that the displacement of helmet was largest at rear point and it was smallest at left-side point(ear-covered part). The ability of absorption was better at the left-side point than the other points.

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF

Instrumented Impact Test using Subsize Charpy Specimen for Evaluating Impact Fracture Behavior in Bulk Amorphous Metals (벌크 아몰퍼스 금속의 충격파괴 거동 평가를 위한 미소 샬피 시험편을 사용한 계장화 충격 시험법)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Jung, Young-Jin;Oh, Sang-Yeob;Kim, Moon-Saeng
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.101-106
    • /
    • 2003
  • In order to investigate the mechanical behavior of newly developed materials, the evaluation of mechanical properties using small-size specimen is essential. For those purposes, an instrumented impact testing apparatus, which provides the load-displacement curve under impact loading without oscillations, was devised. To develop the test procedure with the setup, the impact behaviors of various kinds of structural materials such as S45C, SCM4, Ti alloys (Ti-6V-4Al) and Zr-based bulk amorphous metal, were investigated through the instrumented Charpy V-notch impact tests. The calibrations of the dynamic load and displacement that was calculated based on the Newton' second law were carried out through the quasi-static load test and the comparison of a directly measured value using a laser displacement meter. Satisfactory results could be obtained. The crack initiation and propagation processes during impact fracture could be well divided on the curve, depending on the intrinsic characteristic of specimen tested; ductile or brittle. The absorbed impact energy in Zr-basd BAM was largely used for crack initiation not for crack propagation process. The fracture surfaces under impact loading showed different feature when compared with the static cases.

  • PDF