• Title/Summary/Keyword: Displacement cascade

Search Result 24, Processing Time 0.022 seconds

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

Pattern Recognition Analysis of Two Spirals and Optimization of Cascade Correlation Algorithm using CosExp and Sigmoid Activation Functions (이중나선의 패턴 인식 분석과 CosExp와 시그모이드 활성화 함수를 사용한 캐스케이드 코릴레이션 알고리즘의 최적화)

  • Lee, Sang-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1724-1733
    • /
    • 2014
  • This paper presents a pattern recognition analysis of two spirals problem and optimization of Cascade Correlation learning algorithm using in combination with a non-monotone function as CosExp(cosine-modulated symmetric exponential function) and a monotone function as sigmoid function. In addition, the algorithm's optimization is attempted. By using genetic algorithms the optimization of the algorithm will attempt. In the first experiment, by using CosExp activation function for candidate neurons of the learning algorithm is analyzed the recognized pattern in input space of the two spirals problem. In the second experiment, CosExp function for output neurons is used. In the third experiment, the sigmoid activation functions with various parameters for candidate neurons in 8 pools and CosExp function for output neurons are used. In the fourth experiment, the parameters are composed of 8 pools and displacement of the sigmoid function to determine the value of the three parameters is obtained using genetic algorithms. The parameter values applied to the sigmoid activation functions for candidate neurons are used. To evaluate the performance of these algorithms, each step of the training input pattern classification shows the shape of the two spirals. In the optimizing process, the number of hidden neurons was reduced from 28 to15, and finally the learning algorithm with 12 hidden neurons was optimized.

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • Yang, Seong-Heon;Kim, Cha-Seil;Ha, Hyun-Chen;Yang, Seong-Heon
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.357-363
    • /
    • 2002
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing (4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and almost does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply flow rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decrease by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • 양승헌;하현천;김재실
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.228-234
    • /
    • 2000
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing(4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and 31mos1 does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decreased by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

  • PDF