• Title/Summary/Keyword: Displacement analysis

Search Result 5,853, Processing Time 0.034 seconds

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.

Stress Simulation on Suspended Porcelain Insulators with Cement Displacement

  • Han S. W.;Cho H. G.;Park G. H.;Lee D. I.;Choi I. H;Kim T. Y.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.19-24
    • /
    • 2003
  • The experimental and simulation study of insulator failure by cement growth on suspended insulators (16,500kgf) for transmission line was discussed. To get more practical and analytic calculation results, the advanced program was used. This analysis tool was possible to calculate stress behaviors with mechanical loading when cement displacement happened. From simulation results, the. cement displacement changed with linear according to temperature. The shear stress was about $7 kgf/mm^2$ at $0.07\%$ displacement provided from $200^{\circ}C$, then it could be seen that the cement would be fractured even if $0.07\%$ displacement acted, because the cement had about $7-9 kgf/mm^2$ flexure strength. The curve patterns of shear stress with the increase of mechanical loading were changed at $0.02\%$ as a turning point, when the cement displacement was over $0.02\%$ the shear stresses decreased reversely with the increase of mechanical loading. From analysis on porcelain body it was known that there were enough margin to protect the fracture of porcelain body before the cement

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • v.4 no.2
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

Analysis of Strength and Displacement of Jig Body in Index Machine (Index Machine의 Jig Body 강도 및 변위해석)

  • 한근조;오세욱;김광영;안성찬;전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.24-30
    • /
    • 1998
  • Strength and displacement of jig body in index machine utilized for multiprocess machining such as drilling, boring and tapping, etc, at the same time were analyzed by the use of finite element analysis soft ware ANSYS 5.2A. The whole geometry was constructed by 4048 elements and 7016 nodes employing 8 node brick element. The analyses were carried out on five loading cases combining vertical and horizontal machining to simulate the case occurring large displacement and the one occurring small displacement one and provided following conclusions. (1) Jig body had sufficient strength because its safety factor was 6.95 even in the most severe loading case. (2) The largest displacement in Z direction was 549 m and that in radial direction was 43.7 m. (3) In order to reduce the displacement, vertical machining rather than horizontal or two or three processes should be adopted in the same station. (4) Alternate change of horizontal machining direction at consecutive stations can reduce the displace ment. (5) The dimension of the slider should be increased to reduce the displacement by the tolerance in the sliding part. (6) A bypass idle piston head needs to be installed to give a counterpart supporting load from opposite direction for a single horizontal machining case.

  • PDF

An Analysis on Volumetric Displacement of Hydraulic Gerotor Pump/Motor using Energy and Torque Equilibrium - First Report: Case of Rotation of Inner and outer Rotors - (에너지보존과 토크평형을 이용한 제로터 유압 펌프/모터의 배제용적 해석 - 내·외부로터 회전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • It is difficult to analytically derive a volumetric displacement formula of gerotor hydraulic pump/motor because geometric shape of rotors is complicated. An analytical method about the volumetric displacement is proposed in this work, which is relatively easy and based upon two physical concepts. The first one is energy conservation between hydraulic energy of the pump/motor and mechanical input/output energy. The second concept is torque equilibrium with respect to inner and outer rotors. The formula about the volumetric displacement is derived for the common case of inner and outer rotors rotate with respect to fixed axes. The formula is verified by comparing another analytical displacement formula, and it is numerically verified by comparing numerical results, which is calculated for geometric specification of a motor. The numerical displacement is calculated through CAD software program and MATLAB program. The proposed analytical formula can be utilized in analysis and design of hydraulic gerotor motors.

Evaluation and Adjustment of Lateral Displacement of Complex-shaped RC Tall Buildings Considering the Displacement by Tilt Angle of Each Floor (층경사각에 의한 횡변위를 고려한 비정형 고층건물의 횡변위 평가/보정)

  • Kim, Yungon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.551-558
    • /
    • 2015
  • Lateral displacement in the most complex-shaped tall buildings is caused by eccentric gravity loads which are induced by the difference in location between a center of mass and a center of stiffness. The lateral displacements obtained from analysis, using conventional procedures, are prone to overestimate the actual values because much of realignment efforts made during construction phase are ignored. In construction sequence analysis, the self-leveling of slab and the verticality of columns/walls could be considered at each construction stage. Moreover, the displacement compensation can be achieved by manual process such as re-centering - locating to global coordinates through surveying. Because the lateral displacement increases with the building height, it is necessary to set up adjustment plan through construction stage analysis in advance in order to result in displacements less than the allowable limits. Because analytical solution includes lots of assumptions, the pre-adjusting displacement should be reasonably controlled with considerations for the uncertainty due to these assumptions.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 2 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 2)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.83-91
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

A Study on the Optimal Design of TMD According to the Shape of Large Spatial Structures Part 1 (대공간 구조물의 형상에 따른 TMD 최적 설계에 관한 연구 Part 1)

  • Bae, Seok-Hong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.73-81
    • /
    • 2020
  • In this study, a tuned mass damper(TMD) was installed to control the displacement response to earthquakes by generalizing to six analysis models according to the shape of the upper structure based on the case of various large spatial structures around the world. The six analysis models are ribbed type, latticed type, elliptical type, gable type, barrel type, and stadium type composed of 3D arch trusses. In this paper, ribbed type, latticed type and elliptical type were analyzed. The mass of each TMD was set to 1% of the total structural mass. Result of analyzing the optimal number and position of the analysis model, the displacement response control was the most excellent in the model with 6 and 8 TMDs, and the displacement response decreased in most cases. The displacement response control was better with installing the TMD at the edge point than focusing the TMD at the center of the analysis model. However, when 10 or more TMDs are installed or concentrated in the center, large loads intensively act on the structure, resulting in increased displacement. Therefore, although it is slightly different depending on the shape, it is judged that the displacement response control is the best to install 6 and 8 TMDs at the close to the edge point.

Rotation Control of Shoulder Joint During Shoulder Internal Rotation: A Comparative Study of Individuals With and Without Restricted Range of Motion

  • Min-jeong Chang;Jun-hee Kim;Ui-jae Hwang;Il-kyu Ahn;Oh-yun Kwon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.72-78
    • /
    • 2024
  • Background: Limitations of shoulder range of motion (ROM), particularly shoulder internal rotation (SIR), are commonly associated with musculoskeletal disorders in both the general population and athletes. The limitation can result in connective tissue lesions such as superior labrum tears and symptoms such as rotator cuff tears and shoulder impingement syndrome. Maintaining the center of rotation of the glenohumeral joint during SIR can be challenging due to the compensatory scapulothoracic movement and anterior displacement of the humeral head. Therefore, observing the path of the instantaneous center of rotation (PICR) using the olecranon as a marker during SIR may provide valuable insights into understanding the dynamics of the shoulder joint. Objects: The aim of the study was to compare the displacement of the olecranon to measure the rotation control of the humeral head during SIR in individuals with and without restricted SIR ROM. Methods: Twenty-four participants with and without restricted SIR ROM participated in this study. The displacement of olecranon was measured during the shoulder internal rotation control test (SIRCT) using a Kinovea (ver. 0.8.15, Kinovea), the 2-dimensional marker tracking analysis system. An independent t-test was used to compare the horizontal and vertical displacement of the olecranon marker between individuals with and without restricted SIR ROM. The statistical significance was set at p < 0.05. Results: Vertical displacement of the olecranon was significantly greater in the restricted SIR group than in the control group (p < 0.05). However, no significant difference was observed in the horizontal displacement of the olecranon (p > 0.05). Conclusion: The findings of this study indicated that individuals with restricted SIR ROM had significantly greater vertical displacement of the olecranon. The results suggest that the limitation of SIR ROM may lead to difficulty in rotation control of the humeral head.

Small Displacement Measurement by Holographic Interferometry (홀로그래피 간섭계를 이용한 미소변위 측정)

  • 이해중;황운봉;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.864-872
    • /
    • 1992
  • Two double-exposure holograms are made in the different view angle at the same time, using laser, by overlapping before and after the static deformation. These images are transfered to the computer. The fringe patterns of holograms are recognized by image processing and each component of the displacement and strain at each point of the specimen is obtained by vector analysis, and the results were presented in the graphical form. For the verification of all the ment process, the two experimental cases, the in-plane displacement by tension load and the out-of-plane displacement by bending load, are measured. These results are compared with the exact solution.