• 제목/요약/키워드: Displacement adjustment

검색결과 57건 처리시간 0.031초

가스 스프링 Elevation 동작에 적합한 피스톤 로드 움직임의 관형 오리피스 단면에 관한 연구 (A study on the cross section in pipe type orifice of suitable piston rod moving in gas spring elevation working)

  • 이정익
    • 한국산학기술학회논문지
    • /
    • 제16권11호
    • /
    • pp.7745-7753
    • /
    • 2015
  • 텔레비전의 가스 스프링은 롱 스트로크 (200 ~ 300mm, TV 상승 변위) 하에서 작동 할 때 피스톤 속도의 제어가 가능하다. 이 원리에 의해서 사용자는 높낮이 조절이 가능하다. 먼저 피스톤의 흐름 해석을 수행하였다. 정확한 관형 단면을 위한 피스톤 속도 조절기술을 조사하였다. 유동률 제어 및 높낮이 작용을 위한 피스톤 구조를 제안되었다. 본 연구는 대형 텔레비전 스탠드를 통해 50 인치 이상 TV의 가스 스프링의 개발을 위한 것이다. 최적 피스톤 로드 제어를 위한 중공축(외경 19.9mm, 내경 13.9mm)에 질소 개스(0.3m/s)를 주입하였다. 그 결과, 유동율이 증대함에 따라 피스톤 로드의 압력강하는 외력의 변화 없이 증대되었다. 결과적으로, 가스스프링을 통한 변위의 제어는 가능하다.

인장력 장기 측정기 개발에 관한 연구 (Development of a Tensile Force Measurement Device for Long-term)

  • 신경재;이수헌
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.759-768
    • /
    • 2006
  • 턴버클은 인장재의 중간에 삽입되어 인장력을 조절할 수 있는 장치이다. 그러나 설계 인장력의 크기는 측정이 불가능하고 경험적인 방법으로 현장기술자가 판단하여 시공을 한다. 기존의 턴버클을 이용한 구조물은 시간이 지나면서 인장력의 변화가 생기지만 적절한 조치 없이 그대로 사용하게 된다. 이러한 단점을 보완하기 위해 인장력 측정이 가능한 턴버클을 개발하였다. 본 연구는 기존의 턴버클의 직선부를 곡선화하여 인장력에 의한 곡선부의 휨변형을 이용하여 가로방향 변화를 유도하였다. 가로방향의 변화는 그 값이 작으므로 버니어 캘리퍼스나 내측 마이크로메터를 이용하여 현장에서 측정하고 이 값을 이용하여 하중의 크기를 측정할 수 있도록 고안하였다. 시작품을 제작하여 실험을 수행하였다. 또한 이론적인 해석을 통하여 해석의 유용성을 입증한 후 변수해석을 하였다. 변수해석에 의해 적절한 용량과 측정기의 형상을 도출하였다.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

구조물의 내진성능 보강을 위한 보-기둥 접합형 감쇠장치 (Beam-Column Junction Type Damper of Seismic Performance Enhancement for Structures)

  • 노정태;우성식;이상현;정란
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.855-863
    • /
    • 2009
  • In this study, a beam-column junction type damper is proposed which saves the inner and outer space for the installation of damping devices and allows easy adjustment of control performance The result of the numerical analysis indicated that the displacement response and base shear of a single degree of freedom system by seismic load, El Centro 1940 was reduced with yield moment of the joint hinge and the specific yield moment ratio $\delta$ of the joint hinge existed for the optimal seismic performance. In addition, the dynamic nonlinear characteristics, effects of yielding and dependence of natural period of bi-linear system with the junction type damper is identified. The analysis of multi-degree of freedom system showed that responses of the controlled structures was reduced significantly as the number of a story increases and yield moment ratio decreases when the system is excited by seismic load and sine wave. On top of that, it was also observed that energy dissipation at the joint connected with the dampers was remarkable during excitation.

  • PDF

Wafer-Level Packaged MEMS Resonators with a Highly Vacuum-Sensitive Quality Factor

  • Kang, Seok Jin;Moon, Young Soon;Son, Won Ho;Choi, Sie Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권5호
    • /
    • pp.632-639
    • /
    • 2014
  • Mechanical stress and the vacuum level are the two main factors dominating the quality factor of a resonator operated in the vacuum range 1 mTorr to 10 Torr. This means that if the quality factor of a resonator is very insensitive to the mechanical stress in the vacuum range, it is sensitive to mainly the ambient vacuum level. In this paper, a wafer-level packaged MEMS resonator with a highly vacuum-sensitive quality factor is presented. The proposed device is characterized by a package with out-of-plane symmetry and a suspending structure with only a single anchor. Out-of-plane symmetry helps prevent deformation of the packaged device due to thermal mismatch, and a single-clamped structure facilitates constraint-free displacement. As a result, the proposed device is very insensitive to mechanical stress and is sensitive to mainly the ambient vacuum level. The average quality factors of the devices packaged under pressures of 50, 100, and 200 mTorr were 4987, 3415, and 2127, respectively. The results demonstrated the high controllability of the quality factor by vacuum adjustment. The mechanical robustness of the quality factor was confirmed by comparing the quality factors before and after high-temperature storage. Furthermore, through more than 50 days of monitoring, the stability of the quality factor was also certified.

LVDT를 이용한 범용 외경측정 모듈에 관한 연구 (A Study on the Universal Outer Diameter Measurement Module using LVDT)

  • 이능구;곽이구;김홍건
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.100-106
    • /
    • 2017
  • A universal outer diameter measurement module was developed using a linear variable differential transformer (LVDT). This outer diameter measurement module enables simultaneous measurement of outer diameter, displacement, and perpendicularity of bench-type high-precision products by combining analogue and digital measurement principles with mechanically precise and fine adjustment functions. The developed module showed a performance of 0.001mm in measurement resolution, 0.001mm in measurement accuracy, reference surface abrasion lower than Ra 0.1864, and measurement stability of 0.002mm. Therefore, we have acquired domestic measurement technology to improve productivity by securing technical competitiveness for universal diameter measurement technology, lower production costs through import substitution, and increased quality of products with more precise measurement technology. Furthermore, a substitution effect is expected for expensive import measurement system equipment used in production, research, and inspection sites in industries that produce precision processing products such as automobile and machine components.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

Application of frictional sliding fuse in infilled frames, fuse adjustment and influencing parameters

  • Mohammadi-Gh, M.;Akrami, V.
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.715-727
    • /
    • 2010
  • An experimental investigation is conducted here to study the effects of applying frictional sliding fuses (FSF) in concrete infilled steel frames. Firstly, the influences of some parameters on the behavior of the sliding fuse are studied: Methods of adjusting the FSF for a certain sliding strength are explained and influences of time duration, welding and corrosion are investigated as well. Based on the results, time duration does not significantly affect the FSF, however influences of welding and corrosion of the constitutive plates are substantial. Then, the results of testing two 1/3 scale single-storey single-bay concrete infilled steel frames having FSF are presented. The specimens were similar, except for different regulations of their fuses, tested by displacement controlled cyclic loading. The results demonstrate that applying FSF improves infill behaviors in both perpendicular directions. The infilled frames with FSF have more appropriate hysteresis cycles, higher ductility, much lower deteriorations in strength and stiffness in comparison with regular ones. Consequently, the infills, provided with FSF, can be regarded as an engineered element, however, special consideration should be taken into the affecting parameters of their fuses.

RESEARCH ON ULTRA LOW EMISSION TECHNOLOGY FOR LARGE DISPLACEMENT MOTORCYCLES

  • Kono, T.;Miyata, H.;Uraki, M.;Yamazaki, R.
    • International Journal of Automotive Technology
    • /
    • 제7권3호
    • /
    • pp.277-282
    • /
    • 2006
  • With the aim of achieving half the regulated value of EURO-3 Emission Regulations, an ultra low emission motorcycle has been developed based on a motorcycle with an 1800 $cm^3$, horizontal opposed 6-cylinder engine. For the fuel supply system, an electronically controlled fuel injection system was applied. For the emission purification system, three-way catalysts, a feedback control system with a LAF(Linear Air-Fuel ratio) sensor, and a secondary air induction system were applied. To reduce CO and HC emissions during cold starting, an early catalyst activation method combining RACV(Rotary Air Control Valve) and retarded ignition timing was applied. After the catalyst activation, air-fuel ratio was controlled to maximize the purification ratio of the catalyst according to vehicle speed. For the air-fuel ratio control system, the LAF sensor was used. Furthermore, fine adjustment by the LAF feedback control reduced torque fluctuation due to the air-fuel ratio change. As a result, smooth ride feeling was maintained. Owing to these technologies, half the regulated value of EURO-3 has been achieved without any negative impact to the large-scaled motorcycles' drivability. This paper presents the developed ultra low emission technologies including the control method using an LAF sensor.

사장교 케이블 최적 장력 보정에 관한 연구 (A Study for Finding Optimized Cable Forces of Cable Stayed Bridge)

  • 박대용
    • 복합신소재구조학회 논문집
    • /
    • 제3권1호
    • /
    • pp.16-20
    • /
    • 2012
  • 사장교의 시공에 있어서 보강형과 주탑의 형상 및 케이블 장력은 형상관리시 주요한 관리 항목이다. 특히 보강형의 형상은 Keg Segment의 원활한 폐합뿐만 아니라 계획된 종단 및 횡단 선형을 구현하기 위해 필수적으로 관리되어야 한다. 사장교에서 단계별 시공을 진행함에 따라 보강형 레벨과 케이블 장력 오차는 피할 수 없으며, 이러한 오차는 크게 재료 물성치와 모델링상의 오차, 제작 및 시공에 의해 발생하는 오차 등으로 나눌 수 있다. 이러한 오차로 인해 케이블의 장력과 구조물의 처짐 또는 변위가 이론적인 해석값과 다르게 나타나며, 이에 대한 보정은 케이블의 길이 조정으로 수행하게 된다. 본 연구에서는 제2돌산대교에서 사용된 오차를 보정하는 새로운 최적화 기법을 소개하고자 한다.