• Title/Summary/Keyword: Displacement Calibration

Search Result 121, Processing Time 0.018 seconds

Depth Map Using New Single Lens Stereo (단안렌즈 스테레오를 이용한 깊이 지도)

  • Changwun Ku;Junghee Jeon;Kim, Choongwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1157-1163
    • /
    • 2000
  • In this paper, we present a novel and practical stereo vision system that uses only one camera and four mirrors placed in front of the camera. The equivalent of a stereo pair of images are formed as left and right halves of a single CCD image by using four mirrors placed in front of the ten of a CCD camera. An object arbitrary point in 3D space is transformed into two virtual points by the four mirrors. As in the conventional stereo system, the displacement between the two conjugate image points of the two virtual points is directly related to the depth of the object point. This system has the following advantages over traditional two camera stereo that identical system parameters, easy calibration and easy acquisition of stereo data.

  • PDF

Kalman Filter Estimation of the Servo Valve Effective Orifice Area for a Auxiliary Power Unit (보조 동력장치용 서보밸브 유효 오리피스 면적의 칼만필터 추정)

  • Zhang, J.F.;Kim, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Flow rate is one of the important variables for precise motion control and detection of the faults and fluid loss in many hydraulic components and systems. But in many cases, it is not easy to measure it directly. The orifice area of a servo valve by which the fluid flows is one of key factors to monitor the flow rate. In this paper, we have constructed an estimation algorithm for the effective orifice area by using the model of a servo valve cylinder control system and Kalman filter algorithm. Without geometry information about the servo valve, it is shown that the effective orifice area can be estimated by using only displacement and pressure data corrupted with noise. And the effect of the biased sensor data and system parameter errors on the estimation results are discussed. The paper reveals that sensor calibration is important in accurate estimation and plausible parameter data such as oil bulk modulus and actuator volume are acceptable for the estimation without any error. The estimation algorithm can be used as an useful tool for detecting leakage, monitoring malfunction and/or degradation of the system performance.

  • PDF

Post-earthquake building safety evaluation using consumer-grade surveillance cameras

  • Hsu, Ting Y.;Pham, Quang V.;Chao, Wei C.;Yang, Yuan S.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2020
  • This paper demonstrates the possibility of evaluating the safety of a building right after an earthquake using consumer-grade surveillance cameras installed in the building. Two cameras are used in each story to extract the time history of interstory drift during the earthquake based on camera calibration, stereo triangulation, and image template matching techniques. The interstory drift of several markers on the rigid floor are used to estimate the motion of the geometric center using the least square approach, then the horizontal interstory drift of any location on the floor can be estimated. A shaking table collapse test of a steel building was conducted to verify the proposed approach. The results indicate that the accuracy of the interstory drift measured by the cameras is high enough to estimate the damage state of the building based on the fragility curve of the interstory drift ratio. On the other hand, the interstory drift measured by an accelerometer tends to underestimate the damage state when residual interstory drift occurs because the low frequency content of the displacement signal is eliminated when high-pass filtering is employed for baseline correction.

Experimental calibration of forward and inverse neural networks for rotary type magnetorheological damper

  • Bhowmik, Subrata;Weber, Felix;Hogsberg, Jan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.673-693
    • /
    • 2013
  • This paper presents a systematic design and training procedure for the feed-forward back-propagation neural network (NN) modeling of both forward and inverse behavior of a rotary magnetorheological (MR) damper based on experimental data. For the forward damper model, with damper force as output, an optimization procedure demonstrates accurate training of the NN architecture with only current and velocity as input states. For the inverse damper model, with current as output, the absolute value of velocity and force are used as input states to avoid negative current spikes when tracking a desired damper force. The forward and inverse damper models are trained and validated experimentally, combining a limited number of harmonic displacement records, and constant and half-sinusoidal current records. In general the validation shows accurate results for both forward and inverse damper models, where the observed modeling errors for the inverse model can be related to knocking effects in the measured force due to the bearing plays between hydraulic piston and MR damper rod. Finally, the validated models are used to emulate pure viscous damping. Comparison of numerical and experimental results demonstrates good agreement in the post-yield region of the MR damper, while the main error of the inverse NN occurs in the pre-yield region where the inverse NN overestimates the current to track the desired viscous force.

Performance Improvement of Towed Array Shape Estimation Using Interpolation (보간법을 이용한 견인 어레이 형상 추정 기법의 성능 개선)

  • 박민수;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.72-76
    • /
    • 2000
  • A calibration technique is proposed to improve the performance of 2-D towed array shape estimation using the Kalman filter. In the case of using displacement sensors, 2-D hydrophone positions estimated by the Kalman filter are calculated by assuming that the adjacent hydrophones are horizontally equi-spaced so that maximum distance is equal to the array length. The assumption causes errors in estimating hydrophone positions. The proposed technique using linear model approximation or spline interpolation can reduce the errors by exploiting the fact that the whole length of array is preserved whatever the array shape is. The numerical experiments show that the proposed method is very effective.

  • PDF

Development of Small Size Coriolis Mass Flowmeter (소형 코리올리 질량 유량계의 개발)

  • Lim Ki-Won;Ji Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.497-504
    • /
    • 2006
  • A Coriolis mass flowmeter(CMF), which has U-Shaped unique measurins tube was developed fo. direct mass flow measurement. In order to convert the time difference between two measuring tubes motion into mass flowrate and flow quantity, a signal processing circuit, as a part of CMF, was also developed. The CMF was designed as the 15 mm nominal diameter of pipe connection and the 8 mm stainless steel(sus 316) pipe was used for measuring tube. To maximize the flow signal(time difference) from the measuring tubes, the natural frequency of measuring tube was adjusted as 220 Hz, which is same as the frequency of exciter. The maximum displacement at the end of the measuring tube was measured as 0.05 mm and the maximum time difference between two measuring tubes was observed as $20{\mu}s$, which was proper for discrimination and measuring range of CMF. The developed CMF was tested against the gravimetric flowmeter calibrator in the range of 3 kg/min and 30 kg/min. The results showed that the CMF has good linearity and repeatability in the tested flow range. Large size of CMF base on the current study experience will be developed.

Effects of geometric parameters of fluidic flow meter on flow rate (Fluidic 유량계의 기하학적 변수가 유동률에 미치는 영향)

  • Park, Gyeong-Am;Yun, Gi-Yeong;Yu, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1608-1614
    • /
    • 1997
  • The fluidic flow meter detects the gas flow rate based on the principle of fluidic oscillation instead of the conventional displacement method. It has many merits: wide rangeability, no moving mechanical parts and calibration insensitive to physical properties of fluids. The width of nozzle, size of oscillation chamber, size of target, width of outlet are tested to obtain the effects of jet oscillation on the fluidic flow meter. As the width of nozzle is too wide compared with the size of target, jet oscillation is unstable. The oscillation frequency decreases as the distance between the nozzle and target increases and also as the distance between target and outlet contraction increases. Two different vortexes exist in the front and the rear regions of the target, and they affect the oscillation frequency. The outlet contraction is very important, because the feedback flow is generated by the blocking of the flow. As the width of outlet increases, the jet oscillation frequency decreases. The linearity of this tested flow meter is quite good.

The Small Angle Generator Based on a Laser Angle Interferometer

  • Eom, Tae-Bong;Jeong, Don-Young;Kim, Jae-Wan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.20-23
    • /
    • 2007
  • To calibrate precision autocollimators, the Korean Research Institute of Standards and Science (KRISS) has built a small angle generator using a laser interferometer. The system is based on a sine bar mechanism in which the angle is determined from the ratio of two lengths. The rotational angle is measured by the angle interferometer and the heterodyne laser interferometer detects the relative displacement of two retro-reflectors attached to the rotating arm. The distance between the two retro-reflectors of the laser angle interferometer is self-calibrated by an index table positioned on the rotating arm. The resolution of the system is 0.002 seconds, and the accuracy is better than 0.04 seconds within a measuring range of $\pm$1 degree. The small angle generator can also be used with an index table that can divide one circle into 1440 angles. The combined system can generate any angle over 360 degrees to an accuracy of 0.11 seconds.

Investigation on Image Quality of Smartphone Cameras as Compared with a DSLR Camera by Using Target Image Edges

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • This paper presents a set of methods to evaluate the image quality of smartphone cameras as compared with that of a DSLR camera. In recent years, smartphone cameras have been used broadly for many purposes. As the performance of smartphone cameras has been enhanced considerably, they can be considered to be used for precise mapping instead of metric cameras. To evaluate the possibility, we tested the quality of one DSLR camera and 3 smartphone cameras. In the first step, we compare the amount of lens distortions inherent in each camera using camera calibration sheet images. Then, we acquired target sheet images, extracted reference lines from them and evaluated the geometric quality of smartphone cameras based on the amount of errors occurring in fitting a straight line to observed points. In addition, we present a method to evaluate the radiometric quality of the images taken by each camera based on planar fitting errors. Also, we propose a method to quantify the geometric quality of the selected camera using edge displacements observed in target sheet images. The experimental results show that the geometric and radiometric qualities of smartphone cameras are comparable to those of a DSLR camera except lens distortion parameters.

Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction (압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험)

  • Kim, Y.B.;Lee, J.S.;Lee, S.M.;Park, H.J.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.