• Title/Summary/Keyword: Dispersivity

Search Result 49, Processing Time 0.027 seconds

A Study on Significant Parameters for Efficient Design of Open-loop Groundwater Heat Pump (GWHP) Systems (개방형 지열시스템의 효율적 설계를 위한 영향인자에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Lee, Bo-Hyun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.41-50
    • /
    • 2015
  • Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.

Preparation and In Vitro Release of Ramose Chitosan-Based-5-Fluorouracil Microspheres

  • Li, He-Ping;Li, Hui;Wang, Zhou-Dong;Zhang, Juan-Juan;Deng, Man-Feng;Chen, San-Long
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.88-93
    • /
    • 2013
  • In order to construct a controlled release system of drugs and to reduce toxic side effects of 5-fluorouracil, the novel ramose chitosan-based-5-fluorouracil microspheres (CS-FU-MS) were prepared. Firstly, using chitosan (CS) as carriers and 5-fluorouracil (5-FU) as a model drug, ramose chitosan-based-5-fluorouracil (CS-FU) was efciently synthesized by chemical crosslinking method through microwave irradiation, drug loading was 10.6%; Secondly, CS-FU-MS were prepared by CS-FU self-assembled under the dialysis conditions and the free 5-FU was encapsulated further at the same time. The size dispersivity of particles is uniform, and the average diameter of the CS-FU-MS was $4{\mu}m$. The drug encapsulation efficiency was 76.1%, and the drug loading was increased to 26.22%. CS-FU-MS maintain the zero-order release time in PBS (pH = 7.4) and HCl/KCl (pH = 1.2) dialysis medium was 40h and 34h respectively, and the cumulative release were 58.89% and 79.33% in 182 h. The results showed that CS-FU-MS have excellent sustained release properties.

Analyzing Spatio-Temporal Variation of Groundwater Recharge in Jeju Island by using a Convolution Method (컨벌루션 기법을 이용한 제주도 지하수 함양량의 시공간적 변화 분석)

  • Shin, Kyung-Hee;Koo, Min-Ho;Chung, Il-Moon;Kim, Nam-Won;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.625-635
    • /
    • 2014
  • Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.

Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

  • Lee, Nara;Choi, Kyunghoon;Uthuppu, Basil;Jakobsen, Mogens H.;Hwang, Yuhoon;Broholm, Mette M.;Lee, Woojin
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.107-116
    • /
    • 2014
  • This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with specific weight ratios to iron contents. Colloidal stability was investigated based on the rate of sedimentation, hydrodynamic radius and zeta potential measurement. The characteristic time, which demonstrated dispersivity of particles resisting aggregation, increased from 21.2 min (bare nZVI) to 97.8 min with increasing amount of PVP/VA (the ratios of 2). For the most stable nZVI coated by PVP/VA, its reactivity was examined by nitrate reduction in a closed batch system. The pseudo-first-order kinetic rate constants for the nitrate reduction by the nanoparticles with PVP/VA ratios of 0 and 2 were 0.1633 and $0.1395min^{-1}$ respectively. A nitrogen mass balance, established by quantitative analysis of aqueous nitrogen species, showed that the addition of PVP/VA to nZVI can change the reduction capacity of the nanoparticles.

Green Synthesis of Multifunctional Carbon Nanodots and Their Applications as a Smart Nanothermometer and Cr(VI) Ions Sensor

  • Li, Lu;Shao, Congying;Wu, Qian;Wang, Yunjian;Liu, Mingzhu
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850147.1-1850147.14
    • /
    • 2018
  • In this work, water-soluble and blue-emitting carbon nanodots (CDs) were synthesized from apple peels for the first time via one-step hydrothermal method. The synthetic route is facile, green, economical and viable. The as-prepared CDs were characterized thoroughly by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman, Fourier transform infrared (FT-IR), X-ray photoelectron (XPS), fluorescence and UV-Vis absorption spectroscopy in terms of their morphology, surface functional groups and optical properties. The results show that these CDs possessed ultrasmall size, good dispersivity, and high tolerance to pH, ionic strength and continuous UV irradiation. Significantly, the CDs had fast and reversible response towards temperature, and the accurate linear relationship between fluorescence intensity and temperature was used to design a novel nanothermometer in a broad temperature range from 5 to $65^{\circ}C$ facilely. In addition, the fluorescence intensity of CDs was observed to be quenched immediately by Cr(VI) ions based on the inner filter effect. A low-cost Cr(VI) ions sensor was proposed employing CDs as fluorescent probe, and it displayed a wide linear range from 0.5 to $200{\mu}M$ with a detection limit of $0.73{\mu}M$. The practicability of the developed Cr(VI) sensor for real water sample assay was also validated with satisfactory recoveries.

The Characteristics of Hydrodynamic Dispersion in a Horizontally Heterogeneous Fractured Rock Through Single Well Injection Withdrawal Tracer Tests (수평적으로 불균질한 단열암반층에서 단공주입양수 추적자시험에 의한 수리분산특성)

  • Kang, Dong-Hwan;Chung, Sang-Yong;Kim, Byung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.53-60
    • /
    • 2006
  • Single well injection withdrawal tracer tests with bromide were carried out at two wells developed in a horizontally heterogeneous fractured rock. The hydraulic conductivity of TW-1 well was 5 times larger than TW-2 well, and the average linear velocity of TW-2 well was 1.8 times faster than TW-1 well. The difference of hydrodynamic dispersions of two wells in the fractured rock was studied with the analysis of concentration breakthrough curves and cumulative mass recovery curves of bromide with withdrawal time, and the estimation of average travel distance, pore velocity, longitudinal dispersivity and longitudinal dispersion coefficient. The average travel distances of bromide were estimated to be 3.00 m in TW-1 well and 5.62 m in TW-2 well. The average pore velocities for the injection/withdrawal phase were estimated to be $4.31\;{\times}\;10^{-4}\;m/sec$ in TW-1 well and $8.08\;{\times}\;10^{-4}\;m/sec$ in TW-2 well. Average travel distance and pore velocity were higher in TW-2 well because of small effective porosity. Longitudinal dispersivities were estimated to be 28.73 cm in TW-1 well and 18.49 cm in TW-2 well, and bromide transport was 1.55 times faster in TW-1 well. Longitudinal dispersion coefficients were estimated to be $5.14\;{\times}\;10^{-6}\;m^2/sec$ in TW-1 well and $6.06\;{\times}\;10^{-6}\;m^2/sec$ in TW-2 well, and diffusion area was 1.18 times larger in TW-2 well.

Correlation of Soil Particle Distribution and Hydrodynamic Dispersion Mechanism in Ununiformed Soils Through Laboratory Column Tests (실내주상실험에 의한 불균일한 토양의 입도와 수리분산기작의 상관성 연구)

  • Kang, Dong-Hwan;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.28-34
    • /
    • 2006
  • Laboratory column tests using $Cl^-$ tracer were conducted to study the correlation of soil particle distribution and hydrodynamic dispersion mechanism with three kinds of ununiformed soil samples, in which the ratio of gravel and sand versus silt and clay is 24.5 for S-1 soil, 4.48 for S-2 soil, and 0.4 for S-3 soil. Chloride breakthrough curves with time were fitted with gaussian functions. The relative concentrations of chloride were converged to 1.0 after 0.7 hours for S-1, 6.3 hours for S-2, and 389 hours for S-3. Average linear velocity, longitudinal dispersion coefficient, and longitudinal dispersivity were calculated by chloride breakthrough curves. Longitudinal dispersion coefficients were $1.20{\times}10^{-4}\;m^2/sec$ for S-1, $8.87{\times}10^{-7}\;m^2/sec$ for S-2, and $1.94{\times}10^{-9}\;m^2/sec$ for S-3. Peclet numbers calculated by the molecular diffusion coefficient of chloride and the mean grain diameters of soils were $2.59{\times}10^2$ for S-1, $6.27{\times}10^0$ for S-2, and $1.35{\times}10^{-4}$ for S-3. Mechanical dispersion was dominant for the hydrodynamic dispersion mechanism of S-1. Both mechanical dispersion and molecular diffusion were dominant for the hydrodynamic dispersion mechanism of S-2, but mechanical dispersion was ascendant over molecular diffusion. Hydrodynamic dispersion in S-3 was occurred mainly by molecular diffusion. When plotting three soils on the graph of $D_L/D_m$ versus Peclet number produced by Bijeljic and Blunt (2006), the values of $D_L/D_m$ for S-1 and S-2 were more than 2.0 order compared to their graph. S-3 was not plotted on their graph because the Peclet number was as small as $1.35{\times}10^{-4}$.

The scale dependent effect of hydraulic conductivity and longitudinal dispersivity in the alluvial aquifer with high permeability (고투수성 충적층에서 수리전도도와 종분산지수의 규모종속효과)

  • Kang, Dong-Hwan;Kim, Tae-Yeong;Kim, Sung-Soo;Kim, Dong-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1899-1903
    • /
    • 2008
  • 대수층의 저유량이 풍부한 강변여과수 개발 예정지역의 충적층(지표면하 $25{\sim}35\;m$ 구간)에서 수리전도도와 종분산지수의 규모종속효과를 규명하기 위해 양수시험과 수렴흐름 추적자시험이 수행 되었다. 양수시험과 추적자시험의 규모는 2 m 와 5 m 이었으며 양수시험은 5개 공, 추적자시험은 3개 공을 이용하여 수행되었다. 양수시험은 일정한 양수율($2,500\;m^3/day$)로 수행되었으며, 양수 시작 후 경과시간에 따른 수위변화 자료를 AQTESOLV 3.5 프로그램에 입력하여 해석하였다. 시험 대수층의 수리전도도는 양수정에서 $1.745{\times}10^{-3}\;m/sec$, 양수정에서 이격거리가 2 m 구간에서는 $2.161{\times}10^{-3}\;m/sec$$2.270{\times}10^{-3}\;m/sec$ 이었으며, 이격거리가 5 m 구간에서는 $2.452{\times}10^{-3}\;m/sec$$2.591{\time}10^{-3}m/sec$로 산정되었다. 그리고, 양수정에서 회복시험 시 Theis(Recovery) 방법에 의해 해석된 수리전도도는 $1.603{\times}10^{-3}\;m/sec$이었다. 양수정에서 관측정의 이격거리(d)에 따른 수리전도도(K) 증가함수는 log K=0.0693 log d-2.671와 log K=0.0817 log d-2.655로 추정되었으며, 결정 계수는 각각 0.965와 0.979로서 매우 높게 나타났다. 따라서 양수정에서의 이격거리가 멀수록 수리전도도가 증가하는 규모종속을 확인하였으며, 또한 시험대수층의 수리전도도가 방사상으로 유사하게 분포하고 있음을 알 수 있었다. 수렴흐름 추적자시험의 양수율은 $2,500\;m^3/day$ 이었으며, 2개의 주입정에 염소이온 5 kg을 순간 주입하였다. 염소이온의 농도이력곡선을 작성하여 초기도달시간과 최고농도의 차이를 분석하였으며, 누적질량회수곡선을 통해 양수 후 경과시간에 따른 염소이온의 질량회수율을 분석하였다. 그리고, 염소이온농도 대 누적질량회수율의 이력그래프를 작성하여 누적질량회수율에 따른 염소이온농도의 증가와 감소 변화를 분석하였다. 또한, 염소이온농도의 증가/감소 구간에 대한 선형회귀분석을 수행하여 농도 증가율과 감소율의 변화를 파악하였다. 양수정에서 관측된 경과시간별 염소이온농도 자료를 CATTI 코드의 "Converging Radial Flow With Instantaneous Injection" 해석법에 적용하여 종분산지수를 추정하였다. 양수정에서 이격거리가 2 m인 경우의 종분산지수는 0.4152 m, 이격거리가 5 m인 경우의 종분산지수는 3.2665 m이었다. 따라서 양수정에서 이격거리가 멀수록 종분산지수가 증가하는 규모종속효과를 확인하였으며, 또한 이격거리에 대한 종분산지수의 비는 각각 0.21과 0.65 정도로서 증가하였다.

  • PDF

Analysis of Influence Factors for Remediation of Contaminated Soils Using Prefabricated Vertical Drains (연직배수재를 이용한 오염지반 복원의 영향인자 분석)

  • Park, Jeongjun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2008
  • Due to the growth in industrialization, potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. There are a number of approaches to in-situ remediation that are used in contaminated sites for removing contaminants. These include soil flushing, dual phase extraction, and soil vapor extraction. Among these techniques, soil flushing was the focus of the investigation in this paper. Incorporated technique with PVDs has been used for dewatering from fine-grained soils for the purpose of ground improvement by means of prefabricated vertical drain systems. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. The modeling was intended to predict the effectiveness and time dependence of the remediation process. Modeling has been performed on the extraction, considering tracer concentration and laboratory model test characteristics. The computer model used herein are SEEP/W and CTRAN/W, this 2-D finite element program allows for modeling to determine hydraulic head and pore water pressure distribution, efficiency of remediation for the subsurface environment. It is concluded that the coefficient of permeability of contaminated soil is related with vertical velocity and extracted flow rate. The vertical velocity and extracted flow rate have an effect on dispersivity and finally are played an important role in-situ soil remediation.

  • PDF