• Title/Summary/Keyword: Dispersion modeling

Search Result 274, Processing Time 0.027 seconds

The Analysis of Regional Scale Topographic Effect Using MM5-A2C Coupling Modeling (국지규모 지형영향을 고려하기 위한 MM5-A2C 결합 모델링 특성 분석)

  • Choi, Hyun-Jeong;Lee, Soon-Hwan;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.210-221
    • /
    • 2015
  • The terrain features and surface characteristics are the most important elements not only in meteorological modeling but also in air quality modeling. The diurnal evolution of local climate over complex terrain may be significantly controlled by the ground irregularities. Such topographic features can affect a thermally driven flow, either directly by causing changes in the wind direction or indirectly, by inducing significant variations in the ground temperature. Over a complex terrain, these variations are due to the nonuniform distribution of solar radiation, which is highly determined by the ground geometrical characteristics, i.e. slope and orientation. Therefore, the accuracy of prediction of regional scale circulation is strong associated with the accuracy of land-use and topographic information in meso-scale circulation assessment. The objective of this work is a numerical simulation using MM5-A2C model with the detailed topography and land-use information as the surface boundary conditions of the air flow field in mountain regions. Meteorological conditions estimated by MM5-A2C command a great influence on the dispersion of mountain areas with the reasonable feature of topography where there is an important difference in orographic forcing.

Exposure Assessments of Environmental Contaminants in Ansim Briquette Fuel Complex, Daegu(I) - Effect zone of environmental pneumoconiosis and fugitive dust - (대구 안심연료단지 환경오염물질 노출 평가(I) - 환경성 진폐증 및 비산먼지 영향권역 -)

  • Jung, Jong-Hyeon;Oh, In-Bo;Phee, Young-Gyu;Nam, Mi-Ran;Hwang, Mi-Kyoung;Bang, Jin-Hee;Jeon, Soo-Bin;Lee, Sang-sup;Yu, Seung-do;KimS, Byung-Seok;Yoo, Seok-Ju;Lee, Kwan;Lim, Hyun-Sul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.3
    • /
    • pp.366-379
    • /
    • 2015
  • Objectives: The objective of this study is to assess airborne particulate matter(PM) pollution and its effect on health of residents living near Ansim Briquette Fuel Complex in Daegu metropolitan region. Methods: The California Puff(CALPUFF) dispersion model, version 5.8, which can estimate the dispersion direction and range of airborn $PM_{10}$ was used to determine the possible areas affected by $PM_{10}$ pollutants emitted from Ansim briquette fuel complex. The CALPUFF modeling with 200 m grid-cell resolution was performed based on $PM_{10}$ emissions estimated from the amount of coal consumption in the fuel complex for four months in 2012. The Weather Research and Forecasting(WRF) fields were processed using CALMET to produce CALPUFF-ready meteorological inputs. Also, the distance from Ansim Briquette Fuel Complex to the residence of each environmental pneumoconiosis patient was analyzed. In addition, the affecting region of the pollutants emitted from briquette factories in Ansim Briquette Fuel Complex was determined. Results: CALPUFF modeling results showed that the highest concentrations of $PM_{10}$ were found near around the fuel complex. The modeled $PM_{10}$ distributions were characterized by significant decreases in concentration with distance from the complex. Seasonally, the highest concentration of $45{\mu}g/m^3$ was calculated in October which was mostly due to the distinct variation of amount of emission. Additional modeling with the maximum $PM_{10}$ emission of about 88 tons per year in 1986 showed that the highest concentration in October was nearly increased by 8 times than the concentration modeled with emission of 2010. As a result of medical examination and interviews for the residents in Ansim Briquette Fuel Complex and its surroundings, 8 environmental pneumoconiosis patients were found. These patients do not have occupational exposure and history. These patients have lived 0.3~1.1 km area in Ansim Briquette Fuel Complex and its surroundings. Conclusions: Airborne particles emitted from Ansim Briquette Fuel Complex can contribute to significant increase in $PM_{10}$ concentration in residential areas near around the complex. Especially, the residents near fuel complex may exposed to the pollutants emitted from the factories in Ansim Briquette Fuel Complex.

A Study on the Improvement of Safety of Unloading Site by Comparison of Hydrogen Fluoride Leakage Accident (불화수소 누출사고 비교를 통한 하역작업장의 안전성 향상방안에 관한 연구)

  • Woo, Jongwoon;Shin, Changsub
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.32-38
    • /
    • 2018
  • The purpose of this study is to assess quantitatively the amount of leaks and the extent of dispersion in case of a leak at a hydrogen fluoride tank container unloading station, and to suggest a safety improvement plan to prevent recurrence of similar accidents. In 2012, Company H leaks 8 tonnes of tank containers with a maximum storage capacity of 18 Ton, causing it to become a social issue. As a result of calculation using Gaussian plume model, the concentration was estimated to be more than 20ppm from the leak point to 1,321 m radius. The leakage of hydrogen fluoride from the company R in 2014 was estimated to be 11.02 kg, of which 2.9 kg was treated by the scrubber. As a result of calculation using Gaussian plum model, the damage range with a concentration of 20ppm or more from the leak source was estimated to be 69 m in radius. As a result of comparing the above two accidents, it was found that the leakage amount was about 987 times different and the damaged site was more than 19 times different. Therefore, it was concluded that it was necessary to control the wearing of the protective equipment, the enclosure of the unloading site, the installation of the scrubber, and the emergency training to avoid the accidental leakage of a hydrogen fluoride from the unloading site.

The Effects of Mixer Geometry on Hydraulic Turbulence : Computational Modeling (3-D 전산유체를 이용한 급속혼화조 형상에 따른 난류 유동장 연구)

  • Park, No-Suk;Kim, Sung-Hoon;Park, Heekyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1173-1182
    • /
    • 2000
  • The rapid mixing process has been considered as an important step in water treatment. Since the coagulant dispersion into raw water by rapid mixer can influence on the flocculation and filtration efficiency, many researchers have developed various devices and mixing methodologies. Until now, they focused attention on only coagulant dose, pH. rotating velocity and G value but overlooked the real turbulent flow and mixer geometry in rapid mixer. Therefore this paper questions the significance of turbulent flows in rapid mixer and focuses on the analysis of turbulent fluid in various mixer geometry with CFD(Computational Fluid Dynamics). The results of the jar-tests using various geometries indicate that the turbidity removal rate in a circular jar without baffle is higher than that of a circular with baffle. And the turbidity removal rate in Hudson jar is also founded to be higher than in the circular jar with baffle. The CFD simulation of velocity fields in jar demonstrates that the differences of removal rates among the various geometries are largely due to the formation of the different turbulent fluids fields with different geometries.

  • PDF

A High-resolution Numerical Simulation and Evaluation of Oak Pollen Dispersion Using the CMAQ-pollen Model (CMAQ-pollen 모델을 이용한 참나무 꽃가루 확산 고해상도 수치모의 및 검증)

  • Oh, Inbo;Kim, Kyu Rang;Bang, Jin-Hee;Lim, Yun-Kyu;Cho, Changbum;Oh, Jae-Won;Kim, Yangho;Hwang, Mi-Kyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.1
    • /
    • pp.31-44
    • /
    • 2017
  • The aim of this study is to evaluate the accuracy and variability of the oak pollen concentrations over the Seoul metropolitan region (SMR) simulated by the Community Multiscale Air Quality (CMAQ)-based pollen dispersion model, which is the CMAQ-pollen model integrated with the improved oak pollen emission model(PEM-oak). The PEM-oak model developed is based on hourly emission flux parameterization that includes the effects of plant-specific release, meteorological adjustment, and diurnal variations of oak pollen concentrations. A 33 day-run for oak pollen simulation was conducted by the CMAQ-pollen model with a 3 km spatial resolution for the SMR during the 2014 spring pollen season. Modeled concentrations were evaluated against the hourly measurements at three Burkard sampling sites. Temporal variations of oak concentrations were largely well represented by the model, but the quantitative difference between simulations and measurements was found to be significant in some periods. The model results also showed that large variations in oak pollen concentrations existed in time and space and high concentrations in the SMR were closely associated with the regional transport under strong wind condition. This study showed the effective application of the CMAQ-pollen modeling system to simulate oak pollen concentration in the SMR. Our results could be helpful in providing information on allergenic pollen exposure. Further efforts are needed to further understand the oak pollen release characteristics such as interannual variation of the oak pollen productivity and its spatio-temporal flowering timing.

Simulation and Analysis of Response Plans against Chemical and Biological Hazards (화학 생물 위험 대응 시뮬레이션 및 분석)

  • Han, Sangwoo;Seo, Jiyun;Shim, Woosup
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.49-64
    • /
    • 2021
  • M&S techniques are widely used as scientific means to systematically develop response plans to chemical and biological (CB) hazards. However, while the theoretical area of hazard dispersion modeling has achieved remarkable practical results, the operational analysis area to simulate CB hazard response plans is still in an early stage. This paper presents a model to simulate CB hazard response plans such as detection, protection, and decontamination. First, we present a possible way to display high-fidelity hazard dispersion in a combat simulation model, taking into account weather and terrain conditions. We then develop an improved vulnerability model of the combat simulation model, in order to simulate CB damage of combat simulation entities based on other casualty prediction techniques. In addition, we implement tactical behavior task models that simulate CB hazard response plans such as detection, reconnaissance, protection, and decontamination. Finally, we explore its feasibility by analyzing contamination detection effects by distributed CB detectors and decontamination effects according to the size of the {contaminated, decontamination} unit. We expect that the proposed model will be partially utilized in disaster prevention and simulation training area as well as analysis of combat effectiveness analysis of CB protection system and its operational concepts in the military area.

Numerical Modeling of Circulation in Lake Paldang (팔당호의 수치 순환모형)

  • Yoon, Tae Hoon;Kim, Min Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.317-324
    • /
    • 1994
  • The circulation of Lake Paldang is analysed numerically as an ultimate goal to develop a vehicle predicting the dispersion and concentration of pollutants and sediment flowed into the lake. In finite difference formulation of 2-D depth averaged governing equations. Abbott's 3-time level scheme is employed and for nonlinear terms time centering iteration technique in time and space is used. Model parameters for shear stresses and eddy diffusivities are determined through measured data in and near the lake. Predicted velocities for steady flow are shown to be close to the measured velocities and further improved by taking into account of wind effect. This indicates that the wind effect is needed for proper circulation analysis and it calls for the inclusion of the wind effect. Simulated results of unsteady flow caused by flood inflows and release through Paldang dam are found to characterize the flow features quite well as expected. This implies that the developed model can be used as a tool to analysing the circulation in the lake.

  • PDF

Theoretical Analysis on a Liquid-Liquid Static Extractor Using Highly Packed Fiber Bundle (고밀집 섬유 집합체를 이용한 정적 액-액 추출 장치의 이론적 해석)

  • Kim, Kwang-Wook;Byeon, Kee-Hoh;Lee, Eil-Hee;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.416-424
    • /
    • 1997
  • Mass transfer mechanism and concentration profiles in the axial direction at each phase were analyzed and simulated by a theoretical modeling on a liquid-liquid static contactor using highly packed fiber bundle. The concentrations at the end of the fiber extractor calculated at several operational conditions were compared with experimental results. The fiber extractor could be completely predicted by a plug flow model without axial dispersion. A parameter used in the model equations, $k_a{\sigma}$ called the product of mass transfer coefficient and mass transfer area per unit length of the fiber extractor in the axial direction, which was determined by a curve-fitting, was confirmed to be a unique characteristic value of the fiber extractor, and was about 0.0327cm2/sec.

  • PDF

Meteorological Characteristics related to the Variation in Ozone Concentrations before, during, and after the Typhoon Period in the Korean Peninsula (한반도 태풍영향 전·중·후 시기동안 오존농도 변화에 관한 기상특성 분석)

  • Shin, Hyeonjin;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.621-638
    • /
    • 2017
  • Meteorological characteristics related to variations in ozone ($O_3$) concentrations in the Korean peninsula before, during, and after Typhoon Talas (1112) were analyzed using both observation data and numerical modeling. This case study takes into account a high $O_3$ episode (e.g., a daily maximum of ${\geq}90ppb$) without rainfall. Before the typhoon period, high $O_3$ concentrations in the study areas (e.g., Daejeon, Daegu, and Busan) resulted from the combined effects of stable atmospheric conditions with high temperature under a migratory anticyclone (including subsiding air), and wind convergence due to a change in direction caused by the typhoon. The $O_3$ concentrations during the typhoon period decreased around the study area due to very weak photochemical activity under increased cloud cover and active vertical dispersion under a low pressure system. However, the maximum $O_3$ concentrations during this period were somewhat high (similar to those in the normal period extraneous to the typhoon), possibly because of the relatively slow photochemical loss of $O_3$ by a $H_2O+O(^1D)$ reaction resulting from the low air temperature and low relative humidity. The lowest $O_3$ concentrations during the typhoon period were relatively high compared to the period before and after the typhoon, mainly due to the transport effect resulting from the strong nocturnal winds caused by the typhoon. In addition, the $O_3$ increase observed at night in Daegu and Busan was primarily caused by local wind conditions (e.g., mountain winds) and atmospheric stagnation in the wind convergence zone around inland mountains and valleys.

A Study on the Modeling and Propagation to Evaluate Uncertainties in Measurement Results (측정결과의 불확도산정을 위한 모델링과 불확도 전파에 관한 연구)

  • 김종상;조남호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.165-175
    • /
    • 2003
  • The concept of measurement uncertainty has been recognised for many years since "Guide to the Expression of Uncertainty in Measurement" was published 1993 by ISO. This study firstly propose the mathematical model to evaluate uncertainty considering the dispersion of samples because the mathematical model of a measurement is an important to evaluate uncertainty, and it must contains every quantify which contribute significantly to uncertainty in the measurement result. Secondly the standard uncertainty of the result of a measurement, namely combined standard uncertainty is evaluated using the law of propagation of uncertainty, what is termed in GUM method. In GUM method, a measurand is usually approximated by a linear function of its variables by the transforming its input quantities. Furthermore central limit theorem is applied to the input quantity. However the mathematical model of a measurement is generally not always a linearity function, and a distribution function of input or output quantity is not necessarily normal distribution. Then, in some cases GUM method is not favorable to evaluate a measurement uncertainty. Therefore this study propose a new method and its algorithm which use the Monte-carlo simulation to evaluate a measurement uncertainty in both case of linearity or non-linearity function. function.

  • PDF