• Title/Summary/Keyword: Dispersion Relationship

Search Result 202, Processing Time 0.021 seconds

Three-dimensional Computational Modeling and Simulation of Intergranular Corrosion Propagation of Stainless Steel

  • Igarashi, T.;Komatsu, A.;Motooka, T.;Ueno, F.;Yamamoto, M.
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.105-111
    • /
    • 2021
  • In oxidizing nitric acid solutions, stainless steel undergoes intergranular corrosion accompanied by grain dropping and changes in the corrosion rate. For the safe operation of reprocessing plants, this mechanism should be understood. In this study, we constructed a three-dimensional computational model using a cellular automata method to simulate the intergranular corrosion propagation of stainless steel. The computational model was constructed of three types of cells: grain (bulk), grain boundary (GB), and solution cells. Model simulations verified the relationship between surface roughness during corrosion and dispersion of the dissolution rate of the GB. The relationship was investigated by simulation applying a constant dissolution rate and a distributed dissolution rate of the GB cells. The distribution of the dissolution rate of the GB cells was derived from the intergranular corrosion depth obtained by corrosion tests. The constant dissolution rate of the GB was derived from the average dissolution rate. Surface roughness calculated by the distributed dissolution rates of the GBs of the model was greater than the constant dissolution rates of the GBs. The cross-sectional images obtained were comparable to the corrosion test results. These results indicate that the surface roughness during corrosion is associated with the distribution of the corrosion rate.

Barotropic Shelf Waves Generated By Longshore Wind Stress

  • Lie, Heung-Jae
    • 한국해양학회지
    • /
    • v.16 no.2
    • /
    • pp.99-107
    • /
    • 1981
  • A partial differential equation for the adjusted sea level, obtained from the long wave equations in shallow water, is reduced to a simpler one by the use of physically reasonable approximations based on the observations. The similar equation for the stream function indicates that shelf waves are generated by the longshore wind stress. This indication is in good agreement with the high correlation between the adjusted sea levels and the longshore wind stress. From the dispersion relationship and the boundary conditions, there exist a countable infinite number of modes which satisfy a first-order wave equations. The adjusted sea level for a given wind stress can easily be calculated by utilizing the convolution and the Fourier transformation. Some detailed solutions are presented here for sinusoidal and exponential wind stress.

  • PDF

Estimation of Tritium Concentration in Groundwater around the Nuclear Power Plants Using a Dynamic Compartment Model

  • Choi, Heui-Joo;Lee, Han-Soo;Kang, Hee-Suk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • Every nuclear power plant measured concentrations of tritium in groundwater and surface water around the plants periodically. It was not easy to predict the tritium concentration only with these measurement data in case of various release scenarios. KAERI developed a new approach to find the relationship between the tritium release rate and tritium concentration in the environment. The approach was based upon a dynamic compartment model. In this paper the dynamic compartment model was modified to predict the tritium behavior more accurately. The mechanisms considered for the transfer of tritium between the compartments were evaporation, groundwater flow, infiltration, runoff, and hydrodynamic dispersion. Time dependent source terms of the compartment model were introduced to refine the release scenarios. Also, transfer coefficients between the compartments were obtained using realistic geographical data. In order to illustrate the model various release scenarios were developed, and the change of tritium concentration in groundwater and surface water around the nuclear power plants was estimated.

Construction of Scientific Impact Evaluation Model Based on Altmetrics

  • Li, Jiapei;Shin, Seong Yoon;Lee, Hyun Chang
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.165-169
    • /
    • 2017
  • Altmetrics is an emergent research area whereby social media is applied as a source of metrics to evaluate scientific impact. Recently, the interest in altmetrics has been growing. Traditional scientific impact evaluation indictors are based on the number of publications, citation counts and peer reviews of a researcher. As research publications were increasingly placed online, usage metrics as well as webometrics appeared. This paper explores the potential benefits of altmetrics and the deep relationship between each metrics. Firstly, we found a weak-to-medium correlation among the 11 altmetrics and visualized such correlation. Secondly, we conducted principal component analysis and exploratory factor analysis on altmetrics of social media, divided the 11 altmetrics into four feature sets, confirming the dispersion and relative concentration of altmetrics groups and developed the altmetrics evaluation model. We can use this model to evaluate the scientific impact of articles on social media.

Precise Distribution Simulation of Scattered Submunitions Based on Flight Test Data

  • Yun, Sangyong;Hwang, Junsik;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.108-117
    • /
    • 2017
  • This paper presents a distribution simulation model for dual purpose improved conventional munitions based on flight test data. A systematic procedure for designing a dispersion simulation model is proposed. A new accumulated broken line graph was suggested for designing the distribution shape. In the process of verification and simulation for the distribution simulation model, verification was performed by first comparing data with firing test results, and an application simulation was then conducted. The Monte Carlo method was used in the simulations, which reflected the relationship between ejection conditions and real distribution data. Before establishing the simulation algorithm, the dominant ejection parameter of the submunitions was examined. The relationships between ejection conditions and distribution results were investigated. Five key distribution parameters were analyzed with respect to the ejection conditions. They reflect the characteristics of clustered particle dynamics and aerodynamics.

DETERMINATION OF STELLAR SURFACE TEMPERAURE USING ULTRAVIOLET SPECTRA (자외선 스펙트럼을 이용한 별의 표면온도 결정)

  • 강영운;지나현;한미려;최영준;한원용;이우백
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.91-100
    • /
    • 1998
  • Color indexes and effective temperatures for 25 standard stars have been determined as a pilot project which show a relationship between color index and effective temperature in ultraviolet region. The effective temperature was determined by comparing energy distribution curves derived from the IUE low dispersion spectra with Kurucz atmosphere model. The UV color index was deduced by integrating fluxes in $300{\AA}$ interval of the IUE low disperion spectra. The relation between color index and effective temperature in ultraviolet is similar with that of optical region.

  • PDF

Crack source location by acoustic emission monitoring method in RC strips during in-situ load test

  • Shokri, Tala;Nanni, Antonio
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.155-171
    • /
    • 2014
  • Various monitoring techniques are now available for structural health monitoring and Acoustic Emission (AE) is one of them. One of the major advantages of the AE technique is its capability to locate active cracks in structural members. AE crack locating approaches are affected by the signal attenuation and dispersion of elastic waves due to inhomogeneity and geometry of reinforced concrete (RC) members. In this paper, a novel technique is described based on signal processing and sensor arrangement to process multisensory AE data generated by the onset and propagation of cracks and is validated with experimental results from an in-situ load test. Considering the sources of uncertainty in the AE crack location process, a methodology is proposed to capture and locate events generated by cracks. In particular, the relationship between AE events and load is analyzed, and the feasibility of using the AE technique to evaluate the cracking behavior of two RC slab strips during loading to failure is studied.

Time Resolved Effect of Heat Dispersion on Magnetic Stability in Ferromagnetic Ising Thin-Films: Monte Carlo Simulation

  • Laosiritaworn, W.;Laosiritaworn, Y.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.233-241
    • /
    • 2012
  • In this work, Monte Carlo simulation was used to investigate the magnetization properties of thin ferromagnetic films under a perturbation from a supplied heat pulse on one surface of the films. The finite difference method was used to extract the local temperature of each layer of the films as a function of time for various heat source power and heating period. Then, with the variation of the films temperature, Metropolis method was used to update the magnetic moment in magnetic grain, under the Ising framework and using the FePt parameters. With the extracted magnetization profiles, the relationship between magnetization relaxation in accordance with relevant heat parameters and films thickness was reported and discussed, with a purpose to form a database for future use.

A Study on the Presentation of Idea in Information and Entropy Theory in Vegetation Data (식피 Data 에 대한 Information 과 Entropy 이론의 실용연구)

  • Park, Seung Tai
    • The Korean Journal of Ecology
    • /
    • v.10 no.2
    • /
    • pp.91-107
    • /
    • 1987
  • This study is concerned with some methods and applications, used as a basis on information and entropy analysis of vegetation data. These methods are adopted for the evaluating the effect of sampling intensity on information, which repersnets the departure of observed variable from standard component. Classes on the data matrix are caluculated by using marginal dispersion array for rank and weighting information program. Finally the information and entropy are computed by applying seven options. On the application of vegetation studies, two models for cluster analysis and analysis of concentration are explained in detail. Cluster analysis is based on use of equivocation information and Rajski's metrics. The analysis of concentration utilizes coherence coefficience being transformed values, which has been adjusted from blocks and entropy values. The relationship btween three begetation clusters and four stands of Naejangsan data is highly significant in 79% of total variance. Cluster A relatively tends to prefer north side, and cluster C south side.

  • PDF

Carbon nanofiber-reinforced polymeric nanocomposites

  • Jang, Changwoon;Hutchins, John;Yu, Jaesang
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.197-205
    • /
    • 2013
  • Five vapor-grown carbon nanofiber (VGCNF) reinforced vinyl ester (VE) nanocomposite configurations were fabricated, imaged, and mechanically tested in order to obtain information on the influence and the interactions of the role of the microstructure at lower length scales on the observed continuum level properties/response. Three independent variables (the nanofiber weight fraction and two types of nanofiber mixing techniques) were chosen to be varied from low, middle, and high values at equally spaced intervals. Multiple mixing techniques were studied to gain insight into the effect of mixing on the VGCNF dispersion within the VE matrix. The point count method was used for both lower length-scale imaging techniques to provide quantitative approximations of the magnitude and the distribution of such lower length-scale features. Finally, an inverse relationship was shown to exist between the stiffness and strength properties of the resulting nanocomposites under uniaxial quasistatic compression loading.