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ABSTRACT

A partial differential equation for the adjusted sea level, obtained from the long wave

equations in shallow water, is reduced to a simpler one by the use of physically reascnable

approximations based on the observatious. The similar equation for the stream function

indicates that shelf waves are generated by the longshore wind stress. This indication is in

good agreement with the high correlation between the adjusted sea levels and the longshore

wind stress. From the dispersion relationship and the boundary conditions, there exist a

countable infinite number of modes which satisfy a first-order wave equation. The adjusted

sea level for a given wind stress can easily be calculated by utilizing the convolution and

the Fourier transformation. Some detailed solutions are presented here for sinusoidal and

exponential wind stress.

1. INTRODUCTION

According to the static theory in space and
in time, sea level should respond as an inverse
barometer to atmospheric pressure changes.
In reality, sea level does not always show the
isostatic behaviour on shelves in the low fre-
quency domain and it has been shown that
there exists a time lag between adjusted sea
levels at two different stations(Hamon, 1962,
1966; Mooers and Smith, 1968; Cutchin and
Smith, 1973).

Robinson(1964) first proposed a theoretical
model of continental shelf waves in order to
explain the observed results. Mysak(1967)
extended Robinson’s theory to the case of
offshore stratification and offshore mean cur-
rent. They suggested that the generation of
shelf waves is due to resonance with pressure
system. Adams and Buchwald(1969) considered
the wind stress as the main cause for the
phenomenon and they obtained an analytical

solution for a wind stress in the form of
square waves on an exponentially varying
shelf. Gill and Schumann(1974) obtained the
first-order wave equation by the separation of
variables, assuming that the longshore wind
stress is the principal driving mechanism for
shelf wave generation. Crépon(1976) gave an
explanation. to abnormal response of the sea
level based on a process of geostrophic adjust-
ment.

In this paper, an equation for the adjusted
sea leve] is obtained from the shallow water
wave equations and then some reasonable
approximations are made on the basis of the
observations. This process shows importance
of wind stress in the mechanism of the pheno-
menon more clearly than that from the direct
approximations from the equations of motion.
The adjusted sea level was shown to be related
to the longshore wind stress more strongly
than the onshore wind stress from the obser-
vations(l.ie, 1979). It is shown that a coun-

table infinite number of modes exist on a shelf
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from the dispersion and the boundary condi-
tions. A simple and useful method is presented
for the general solution of forced barotropic
shelf waves, introducing the convolution and
the Fourier transformation, and the effects of
a sinusoidal wind stress and an exponential
wind stress on the adjusted sea level are in-

vestigated.

2. FORMULATION OF THE
PROBLEM

The linearized shallow water wave equation
is considered in horizontal rectangular coor-
dinates such that the positive x-axis is seaward
from the coast(x=0) and y-axis is along the
coastline. Assuming that the fluid is incom-
pressible and the water density is constant{p=
1g/cm?®), the equations of motion and contin-
uity, neglecting friction and dissipation, have

the form
LRI TGE E
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where # and v are the depth-averaged com-
ponents of current velocity in the x,y direct-
ions, respectively; &’ is the elevation of the
sea surface from the equilibrium level; £, is the
inverse of atmospheric pressure expressed in
the same unit as the sea level elevation; k(x,
¥) is the depth; f is the Coriolis parameter; g
is the acceleration due to the gravity; 7. and
-y are the wind stress components toward east
and north, respectively.

¢’ respresents the sea level which is not
influenced by the tide generating forces, and
in practice its values are estimated from
hourly heights recorded at a tidal station by
applying an appropriate filter to the heights.
The difference &-¢&, can be regarded as the

non-isostatic part of the sea level changes, so-
called the adjusted sea level &

Eliminating « and v from (1), (2) and (3),
the following equation is obtained for the
adjusted sea level
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x, y and z are the unit vectors of x, y and

—
z axes, respectively. The current velocity u
takes the vector form as
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3. APPROXIMATIONS

It is very convenient to make some reaso-
nable approximations which can reduce the
equation (4).

It has hLeen previously shown by other
authors that the frequrncies (¢) of the pheno-
menon under consideration are much less than
the Coriolis parmeter(f) when the mid-latitude
and the significant spectral peaks of several
days are referred to.

The exponential profile seems to be appro-
priate for the shelf topography. Buchwald and
Adams(1968) chose this profile for the shelf
off Sydney, which fitted to actual shelf. Let

the depth profile be of the form
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h(x,y) = ho(3)exp(24x) for Q<x<l
ho(y)exp(240) for x>>1

where % is a constant chosen from the depth
variation perpendicular to the coest, and [ is
the width of continental shelf. The appropriate
values, for instance, off La Pointe de Grave
in the Bay of Biscay, are hy=12x10%cm; A=
1077 /em; l=3x10"cm; h(/,y)=4.8X10°cm.

Considering length scales of order 10° or 107
cm and time scales of about several days, the
5 terms in the left side of the equation (4)
can be neglected compared with the others.
For the cases of the Bay of Biscay, the east
sea of Australia and the east sea of Korea,

we have
lﬁ ‘/‘ 3 Z_}; gyzcgt - 2[;0 l~0(3 or
4x%10" 2)
2
o |/ S5 2 5
~0(107%)

The terms containing £ are thus negligible in
comparison with those involving the depth
variation ph/h. The § terms in the right side
of (4) are also sufficently small for the above
time and length scales compared with the other
terms representing the divergence or curl of
wind stress.

With the above three approximations, the
equation (4) is reduced to the form
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The equation (5) represents the appearance
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of the forcing terms, divergence and curl of
wind stress.
The ratio of the second term f(-+£.) to the

—;a—(h 0% > is of the order of
ox ox
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first term ——
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radius of deformation (K,=

where R, is the barotropic

(gh)'*/1f1). Most

continental shelves have small width compared
with Ry & and &, are of the same order from
the spectra of the atmospheric pressure and
adjusted sea levels. Since the pressure term
&, is negligible in (5), the generation of shelf
waves should ke related to the wind stress
and 9¢’/ot is negligible in the equation of
continuity (3). This approximation also sug-
gests that that the gravity waves are filtered
and the movement is quasi-nondivergent, which
allows to introduce a stream function ¢ defined
as

1 8 .. 1 9
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Introducing the stream function, we obtain the
equation for ¢ from (1), (2) and (3) using the

above approximations.
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The adjusted sea level has been shown to be
related to longshore wind stress much more
than that of onshore wind stress from the
correlograms between the components of wind
stress and the adjusted sea levels, which im-
plies that £ would be explainable by the shelf
waves generated by the longshore wind stress
(Lie, 1979). The depth variation perpendicular
to the coast is generally known to be much
greater than that parallel to the coast and

thus r,—%— can be neglected. Then, the forcing
1 — —
term 52 . pxz disappears because of the

scale assumptions(Adams and Buchwald, 1969;
Gill and Schumann, 1974).
Using those approximations, we obtain
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4. FREE SHELY¥ WAVES

Assuming that the solution of (8) for z,=
is
(%, 3, D) == @ireTiet kD ©)
— — > —> —
where k is the wave vector(k=ax+by) and r
R — - - ,
is the position vector(r=xx-+yy). The
substitution of (9) in (8) gives the dispersion

relation
@b = — 2k ._Z_ (10)

Solution (9) must satisfy the boundary con-
ditions such that

u=0 at x=Q,

u and v are continuous at x=l[.

The following constraint comes from the
boundary conditions

tan(al) =—a/(A+1b}) €8]
Adams and Buchwald(1968) obtained the same
condition. Gill and Schumann(1974), assuming
that v>>u for 0<x<! and wv<u for x>,
obtained tan(al)=—a/i which can be also
obtained by neglecting |b| in comparison with
4 in (11).

There are infinite intersections between G,
[=tan(al)] and G.[=—a/(i+[b])] but the
dispersion relation (10) imposes a limit to the
number of modes.

The relation (10) is written in a circular

form

\

The intersections which are on a circle with
. o f2 N1/2

the radius of /.(—F»— 1) centered at a=Q and

b:w}.% are only valid. The function G,

shows two different curves according to the
f

cases b> — 1"
es b> 20_

= ’*zLi[(zTJf)zr (AZ-ILOZJ]M(] " We will

or b<—2—o— because G,=—a

(4]
call modes »n the waves which correspond to

the intersections for {bl</’.—£, and modes m
-
the waves for 1b]>2i.
[2)

Figure 1 denotes the intersections between
G, and G, which satisfy the dispersion relation.
Table 1 presents the values, a, & and phase
velocity corresponding 1o the lowest six modes
for 2=10"7/cm and f/o=7,

It is shown from (10) that waves propagate
in the negative » direction in the Northern
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Fig. 1. Intersections between G;=tan (al) and G.=
—a/(i1+]b]) which satisfy the dispersion
relation.

Table 1. Components of wave vector and phase velocity for 2=10""/cm and f/os=7.

mode a b phase velocity mode la| b phase velocity
" 10~ /cm 10-%/cm m/sec n 10-*/cm 107%/cm cm/sec
1 8.308 1.218 —-11.73 1 10.263 138.518 —10. 31
2 17. 802 3. 044 — 4.69 2 20. 455 136.193 —10.49
3 27.995 6. 626 — 2.16 3 30.718 132.100 —10. 81
4 38. 397 12.331 — 1.16 4 40. 911 125.913 -11.35
5 49. 009 21. 029 — 0.68 5 51.103 116. 781 —-12.23
6 59. 760 34. 946 — 0.41 6 61.156 102.556 —13.93
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Hemisphere, The phase velocity of the first
mode n corresponds well to the propagation
velocity observed from the phase differences
between the adjusted sea levels at different
stations along the major continental shelves
over the world (cee Mysak, 1980, for more

detail).

5. GENERAL SOLUTION OF
FORCED LONG WAVES

It is assumed that the contribution of modes
ui to & is comparatively small because their
velocities (of order 10 cm/sec) cannot explain
the phase differences observed Letween the
Additionally,
nearly equal to 0(b?) and 9*/ox® is of order
0(a®). For the first three n modes(Table 1,

5° is very small in comparison with &%

adjusted sea levels. /oy* is

With the above approximations, the equation
(8) is reduced to

_3_[_5__1_ 0 V) £ b B

ot Bx(h ox ] ® dx oy
1
“hE dx

where the wind stress is assumed a function

of t and y. Teaking a solution (2, y,0)=2,

r,(y 1) as

ea(x)Ga(3,1), a first order wave equaton is
obtained by the same process of Gill and
Schumann (1974)

1 o o
———a—t—Cn(y,t) +—Z,;-Gn(3,f)

Cn

=L, a0
. — Aot {0 a
where @.(x) =Awe*sin (a-x), P.= R A ¢

(x)dx—— "";;A" @nn 4 A= hofAlI+3] (Pt anD)]

The problem of Cauchy for the equation
(14) consists in finding for £<{0 a solution G.
(»,1) for the right part of (14) and G.(y,0)
=G..(¥) given. We assume the motions start
from the rest at t=0 to solve this equation

(14). We consider that the wind stress starts

action at time #==0 and that G.(y,¢) and 7,(y, 1)
are zero for £<0. Call G» and @ the extended
functions of G. ard @Q for 1<0, where Q(»,1)
=pusy (3, ) /f-

Applying the Fourier transformation to (14)
in y for fixed t with the definitien of G. and
@, we have

L B anik Va2 kD) (15)

where V.(k, 1) = 5 "y, e dy and Z (&, £)

:‘i:f)(y, e dy. The solution G.(y,f) can
be.also obtained by the Fourier transformation
in ¢ for fixed y or by the Laplace transforma-
tion. The equation (15) is expressed in the
form of convolution in # for fixed k (Schwartz,
1965) :

[ 2D o dw(t)]* Vulks £)

Cll
ZZ(k,t) (16)
where the symbtol * represents the convolution

product and d&(t) is the Dirac distritution,
defined by
oty ==| et
The elementary solution ¢, Y(#)e = of V.
(k,t) is obtained directly from the inverse of

{_El,,— g?— +27fik5] - Va(k,t) is therefore

Valk, ) =Z (k, ¥ cxY(tye ! an
)
where Y(t)={0 for 1<0

1 for £>0

Cx(v,1) is obtained from the inversion of the
Fourier transformation on V.(k,#):

G0, t)-cnﬁ Z (k1%

Y(#)e it at-n gk (18)
G«(7,1) has to ke always zero for <0 by the
definition and the expression (18) is the solu-

tion in question.
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6. ELEVATION AND LONGSHORE
CURRENT VELOCITY

The difference in elevation between any two
points across the shelf due to the continental
shelf waves is obtained from (1) with the
approximation ob<<fa

‘;:"(xhya t)”‘fn(xu)’, t)z'—i'[xzi_—aﬂldx

g Jx h ox
. J AGa(y,1) 2__ 32y o
-——m {[(a*—4*) sin (a.x)

— 22ancos (anx) ] e“’] i

*=xy

=xp

For instance, the difference in elevation Let-
ween the coast and the limit of shelf is

n nAn—n >
5"(0’}” t)"E"(lsya t)N—' a'g”" i‘(yj)_ (19)
g

This difference is proportional to a., c., A.
and G. but it diminishes with the depth at
the coast ho. The elevation at ! is negligible
compared with that at the coast because &,(!)/
£.(0) is of order e ? Typical adjusted sea
level changes are of order 0.1 m and then %,
{l,y,t) can be considered as zero.

Figure 2 shows £.(x,y,¢t) as a function of
x across the shelf for the first three modes #.

The longshore current at any x is with the

help of (6)

Enlx,y,t)
0 (y,1)

200 X (km)

~0.25 -

Fig. 2. Elevations ¢, of the first three modes =
across the shelf, assuming that f/( g ho)

=1.

A‘n_n ,t .
Vi(x, 3, 1) =*-,fo7£3’—) [Asin (a.x)

+axcos (anx)] 20)
The current at x==Q is therefore
AnAn

V. (0,5, =~ PR

—‘Eﬂ(l’ys t)]
V.(0,y,1) depends thus on the difference in
elevation across the shelf like the geostrophic

Go(3 )~ £ [£000,5,1)

current, and on the phase velocity ¢.. And the
current at x=! is enough small to be neglected
because V.(I) is of order V.(¢)e.

7. SOLUTION FOR THE SINUSOI-
DAL WIND STRESS AS A
FUNCTION OF ¢ AND y

Consider the wind stress which propagates

'parallel to the coast with a frequency wy and

a wavenumber b,

T (=3 Y(D)reicotton
for —oco<y<+o0
where Y(¢) is the step function.
The solution G.(y,?) is obtained from (18)
and @ characteristic of Dirac function

@D

[el' (wpt-bgy) —ix/2

- o puCnT()
RN o)

—eitotent=x)-i%/2] ©22)
The first term in (22) represents the direct
effect of the progressive wave in the same
form as that related to wind stress but with a
phase difference z/2. The second term would
be the part of the response due to the con-
tinental shelf waves with a phase velocity c,.

The function (22) is plotted in Figure 3 as
a function of wy/b, The response function |G-
0]

symmetrically around the resonant frequency

diminishes exponentially with wp/8,

(wo/bo=cn). When wo/b, is equal to ca,
nance occurs and G.(¥,t) increases linearly in

reso-

time ¢ :

é"(y’ t) — Toeibo(c"t—y)

Potel “]f"t (23)
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Fig. 3. |C.(y,t|) as a function of wo/be for the
sinusoidal wind stress of the form ¢(y,¢)=
;r.,exp[——i(wot—boy)], assuming |bof | =bn-o
and sin[ (wo—bocs)t/2]1=1.

The difference of elevation across the shelf
is obtained from the expressions (19) and (22)

. M,e it
E0, 3, ) —6x(l, 3, 1) (wobocn)
sin [% (wo+bocs) t]ei(moﬂ bocndt/2 ©4)
2(1,.26,.3‘[0

where M,=—

hogf?A(l—ca/2f)

When M, and M, are compared with M, for
a. and ¢. given in Table 1, M,/M;~0.325;
M;/M;~0.082; 0(M)~5x10"*t0/w, The con-
tribution of the second and third modes to the
elevation should be equal to 32% and 8%,
respectively, of the contribution of the first
mode.

8. SOLUTION FOR THE EXPO-
NENTIAL WIND STRESS AS
A FUNCTION OF ¢ AND y

Now consider the wind stress ?(y,t) which
varies exponentially with time ¢ and axis y of
the form

— -

(3, )=y Y(Oree @7V (25)
where @ and 7 are positive.

The solution G.(3,f) is obtained from the
expression (18)

o040 1Sy

zre-ﬁ(yﬂcnll)lltnl
[ 74aflex|

- Y(y+ ‘C"lt) f(T_p;’Z;)' Cn l)

_e—Ale—T, }

(T an] o
The response function (26) shows the effects
of wind stress {(a,7) and shelf waves (¢.) and
it can be divided into two parts, the first part
for the region y>0 and the second part for
the other region y <0 and y>—|cait.

(i) regiou y>0

Eﬂ(y,t)zgji, ) [e—dru"u_l] @7

where A7=7—a/|c.|
When the phase velocity |c.| is greater than

all, 1Ga (3,01 < p—"i}%ﬁ— , while for |ca|
. PRACH ) N
<alr, lGn(y,t)|~|_—Td_T_—e |

The maximal value of |G-(y,f)| is therefore
more important for |c.|<Ca/7 than that for
lea| >af7.

(ii) region — |¢.)t<<y<0
Guly, )y =Ap et et
2r Fiytle

(1o o) @®

For {c.|>a/T, [Ga(3,8)| is always less than

2]1‘7:11;’0‘ » while for {c.|<a/7, the maximal

value of [G.(¥,t)| is smaller than ‘ ?j; e~

Heglt) l because

than 1.
At the place where the shelf wave arrives
O~—lelD),

equal to

—_ZT%—TAT and e*"0*ta® are less

the solution is approximately

—7@%)—-. The elevation depends

on 7 and the anomaly 47.

The response function (26) for the exponen-
tial wind stress depends on two factors, the
phase velocity of shelf waves and the anomaly
Ar. Tt presents also the possibility of resonance
when the phase velocity |c.| is equal to a/7.

9. RESULTS AND DISCUSSIONS

The generation of shelf waves does not seem
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to be directly driven by the moving pressure
forcing term from the fact that £, is negligible
in the equation (5) compared with the other
terms. Shelf waves are most likely generated
by the wind stress. The partial differential
equation for the stream function (7) indicates
that shelf waves are generated by the longshore
wind stress. Also, high correlations between
adjusted sea levels and longshore wind stress
support this possibility (Lie, 1979).

Equation (5) represents appearance of two
wind forcing terms on the right side; diver-
The forcing

cence and curl of wind stress.

term, proportional to VXT:: has been assumed
to be negligible according to scale assumption,
but it may play an important part as forcing
mechanism when the wind varies rapidly
across the shelf.

Gill and Schumann(1974) gave an explana-
tion that it is the boundary condition at the
coast which introduces the wind forcing term.
But no forcing terms in their equation are
rather due to the assumption —%(Q—g_%— in the
equations of motion. Equations (5) and (7)
present both the appearance of two wind forc-
ing terms without consideration of the boun-
dary condition at the coast. If there does not
exist the boundary condition at the coast, the
wind forcing terms produce waves which
satisfy only the dispersion relation (10), but
the boundary condition at the coast permits
only a countable infinite number of modes to
exist on the shelf, which satisfy the first-order
wave equation.

Equation (7) can be written in the form

3!’3 a(/1>|a(}l g(;)
+f[<—3‘i'— 7))

o _z__?_(Lﬂ
_( dy ox \ h

(29)

Heung-jae Lie

The equation (29) descriles well the physical
mechanisms concerning total and Ekman tran-
sports. Distinction between the two mechaniems
was diccussed in detail by Gill and Schumann
(1974).

The method used in obtaining the general
solution of forced waves is

very easy and

usefull ome; it gives directly an elementary
solution ard sea level changes for & given
wind stress can bte easily calculated by the
Fourier transfermaticn and the convolution.
The elementary solution has a similar form
of a standing wave. The integration in (18)
implies the possibility of resonance when the
wind stress varies with time and y-axis. The
response function (22) for the sinusoidal wind
stress presents resonance when the phase velo-
city of shelf waves ¢. is equal to the propaga-
tion velocity of wind. The solution for an
exponential wind stress which is nat in the
form of progressive waves also gives the pos-

sibility of resonance at |¢.|=a/7.
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