• Title/Summary/Keyword: Dispersed flow

Search Result 207, Processing Time 0.025 seconds

Heat Transfer Characteristics of Plastic Particle Slurry in a Circular tube Flow (관내 유동 플라스틱 슬러리의 열전달 특성)

  • 김명환;김명준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2004
  • This present experimental study has dealt with the heat transfer characteristics of plastic particle slurry which flows in a circular tube. This type of slurry is suggested for heat transfer enhancement effect cause by random and vortex effect of plastic particle dispersed in water. As a result, the thermal boundary layer becomes thin so the heat transfer coefficient on the tube wall more increase compare to pure water flow. This experimental test section was composed with stainless pipe which has the length of 2000mm, inner pipe diameter of 14mm and outer pipe diameter of 60mm. The most effective and important parameter of this experiment is plastic packing factor(PPF). The focuses of these results are pressure drop and heat transfer coefficient. As results, the friction factor of plastic particle slurry becomes higher at laminar flow region than pure water because of buoyancy effect of plastic particle but the local heat transfer coefficient becomes higher.

A Study on the Two Phase Flow in the Floor of Containment Building after a Loss of Coolant Accident (냉각재 상실사고 후 격납건물내의 이상유동 연구)

  • Bae, Jin-Hyo;Park, Man Heung;Koh, Chul-Kyun;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1274-1284
    • /
    • 1999
  • The Regulatory Guide 1.82 recommends an analysis of hydraulic performance for sump of ECCS (Emergency Core Cooing System) when LOCA(Loss of Coolant Accident) occurs in a nuclear power plant. The present study deals with 3-dimensional, unsteady, turbulent and two-phase flow simulation to examine the behavior of mixture of reactor coolant and debris near the floor of containment building in conjunction with appropriate assumptions. The dispersed solid model has been adjusted to the interfacial momentum transfer between reactor coolant and debris. According to the results, the counterclockwiserecirculation zone had been formed in the region between sump and connection aisle about 376 second after LOCA occurs. The debris thickness accumulated on a sump screen periodically increases or decreases up to 2000 second, afterwards its peak decreases.

Numerical Simulation of the Wind Flow Over a Triangular Prism with a Porous Windbreak (다공성 방풍벽이 설치된 삼각프리즘 주위 유동장의 수치모사)

  • 김현구;임희창;이정묵
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.223-233
    • /
    • 1999
  • The wind-flow characteristics over a two-dimensional triangular prism with a porous windbreak are numerically investigated. The geometry is a simplified model of large outdoor stack with a frontal wall-type windbreak which is used to prevent particle dispersion by reducing wind speed over stak surface. In the present numerical model, the RNG k-$\varepsilon$ model, the orthogonal grid system and the QUICK scheme are employed for the successful simulation of separated flow. The predicted results are compared and validated with the associated wind-tunnel experiments. In addition, the trajectories of dispersed particles and their sedimentation characteristics are quantitatively investingated using a Lagrangian turbulent-dispersion model.

  • PDF

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

EXPERIMENTAL STUDY OF CRITICAL HEAT FLUX WITH ALUMINA-WATER NANOFLUIDS IN DOWNWARD-FACING CHANNELS FOR IN-VESSEL RETENTION APPLICATIONS

  • Dewitt, G.;Mckrell, T.;Buongiorno, J.;Hu, L.W.;Park, R.J.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.335-346
    • /
    • 2013
  • The Critical Heat Flux (CHF) of water with dispersed alumina nanoparticles was measured for the geometry and flow conditions relevant to the In-Vessel Retention (IVR) situation which can occur during core melting sequences in certain advanced Light Water Reactors (LWRs). CHF measurements were conducted in a flow boiling loop featuring a test section designed to be thermal-hydraulically similar to the vessel/insulation gap in the Westinghouse AP1000 plant. The effects of orientation angle, pressure, mass flux, fluid type, boiling time, surface material, and surface state were investigated. Results for water-based nanofluids with alumina nanoparticles (0.001% by volume) on stainless steel surface indicate an average 70% CHF enhancement with a range of 17% to 108% depending on the specific flow conditions expected for IVR. Experiments also indicate that only about thirty minutes of boiling time (which drives nanoparticle deposition) are needed to obtain substantial CHF enhancement with nanofluids.

In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres

  • Choi, Chang-Hyung;Jung, Jae-Hoon;Hwang, Taek-Sung;Lee, Chang-Soo
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2009
  • This study presents a microfluidic method for the production of monodisperse poly(ethylene glycol) (PEG) microspheres using continuous droplet formation and in situ photopolymerization in microfluidic devices. We investigated the flow patterns for the stable formation of droplets using capillary number and the flow rate of the hexade-cane phase. Under the stable region, the resulting microspheres showed narrow size distribution having a coefficient of variation (CV) of below 1.8%. The size of microspheres ($45{\sim}95{\mu}m$) could be easily controlled by changing the interfacial tension between the two immiscible phases and the flow rates of the dispersed or continuous phase.

Two-fluid modelling for poly-disperse bubbly flows in vertical pipes: Analysis of the impact of geometrical parameters and heat transfer

  • Andrea Allio ;Antonio Buffo ;Daniele Marchisio;Laura Savoldi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1152-1166
    • /
    • 2023
  • The bubbly flow of air or steam in subcooled water are investigated here in several test cases, characterized by different pipe sizes, bubble dimensions and flow rates, by means of CFD using a Eulerian-Eulerian approach. The performance of models that differ for the turbulence closure in the continuous phase, as well as for the description of the lift force on the dispersed phase, are compared in detail. When air is considered, the space of the experimental parameters leading to a reasonable performance for the selected models are identified and discussed, while the issues left in the modelling of the concurrent condensation are highlighted for the cases where steam is used.

Thermal Analysis of Double-tube Triple-flow LNG Vaporization System (이중관 삼중흐름 열교환에 의한 LNG 기화시스템의 열적 해석)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.839-844
    • /
    • 2003
  • As sea water is being used as only heat source of LNG open rack vaporizer, serious problem has been risen in LNG terminal by the lack of heating energy source for LNG vaporization due to the temperature drop of sea water in winter. In this paper the new double-tube triple-flow(TRIDEX) vaporizer was suggested to solve the problem and the system was thermally analysed. LPG(liquefied petroleum gas) and sea water were introduced as the heat sources for LNG TRIDEX vaporizer. The flow patterns of TRIDEX vaporizer are as follows: LNG flow in the annular space, PG(petroleum gas) flow in the inner tube, and sea water flow in the outside of the double pipe. The overall LNG vaporization system was consisted of TRIDEX vaporizer, LPG vaporizer and PG heater. LPG in TRIDEX was directly dispersed in the sea water desalination unit, so that LPG turns to be gas phase for the reuse in TRIDEX vaporizer. New TRIDEX vaporizer system for LNG evaporation was analysed as much more effective than the present single tube one in the case of colder temperature of sea water in winter.

THE EFFECTS OF MACH NUMBER AND THICKNESS RATIO OF AIRFOIL ON TRANSONIC FLOW OF MOIST AIR AROUND A THIN AIRFOIL WITH LATENT HEAT TRANSFER (잠열 전달이 일어나는 얇은 익형주위의 천음속 습공기 유동에서의 마하수와 익형 두께비의 영향)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2012
  • Once the condensation of water vapor in moist air around a thin airfoil occurs, liquid droplets nucleate. The condensation process releases heat to the surrounding gaseous components of moist air and significantly affects their thermodynamic and flow properties. As a results, variations in the aerodynamic performance of airfoils can be found. In the present work, the effects of upstream Mach number and thickness ratio of airfoil on the transonic flow of moist air around a thin airfoil are investigated by numerical analysis. The results shows that a significant condensation occurs as the upstream Mach number is increased at the fixed thickness ratio of airfoil($\epsilon$=0.12) and as the thickness ratio of airfoil is increased at the fixed upstream Mach number($M_{\infty}$=0.80). The condensate mass fraction is also increased and dispersed widely around an airfoil as the upstream Mach number and thickness ratio of airfoil are increased. The position of shock wave for moist air flow move toward the leading edge of airfoil when it is compared with the position of shock wave for dry air.

A STUDY ON FLOW IN A SLIT NOZZLE FOR DISPENSING A LOW-VISCOSITY SOLUTION OF SINGLE-WALLED CARBON NANOTUBES (저점성 SWNT 분산액 도포용 슬릿 노즐 설계를 위한 유동해석)

  • Shon, B.C;Kwak, H.S.;Lee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.78-85
    • /
    • 2009
  • A combined theoretical and numerical study is conducted to design a slit nozzle for large-area liquid coating. The objectives are to guarantee the uniformity in the injected flow and to provide the capability of explicit control of flow rate. The woking fluid is a dilute aqueous solution containing single-walled carbon nanotubes and its low viscosity and the presence of dispersed materials pose technical hurdles. A theoretical analysis leads to a guideline for the geometric design of a slit nozzle. The CFD-based numerical experiment is employed as a verification tool. A new flow passage unit, connected to the nozzle chamber, is proposed to permit the control of flow rate by using the commodity pressurizer. The numerical results confirm the feasibility of this idea. The optimal geometry of internal structure of the nozzle has been searched for numerically and the related issues are discussed.