Browse > Article

In Situ Microfluidic Synthesis of Monodisperse PEG Microspheres  

Choi, Chang-Hyung (Department of Chemical Engineering, Chungnam National University)
Jung, Jae-Hoon (Department of Chemical Engineering, Chungnam National University)
Hwang, Taek-Sung (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Macromolecular Research / v.17, no.3, 2009 , pp. 163-167 More about this Journal
Abstract
This study presents a microfluidic method for the production of monodisperse poly(ethylene glycol) (PEG) microspheres using continuous droplet formation and in situ photopolymerization in microfluidic devices. We investigated the flow patterns for the stable formation of droplets using capillary number and the flow rate of the hexade-cane phase. Under the stable region, the resulting microspheres showed narrow size distribution having a coefficient of variation (CV) of below 1.8%. The size of microspheres ($45{\sim}95{\mu}m$) could be easily controlled by changing the interfacial tension between the two immiscible phases and the flow rates of the dispersed or continuous phase.
Keywords
microfluidics; droplets; microspheres; monodispersity; PEG;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 I. W. Cheong, J. S. Shin, J. H. Kim, and S. J. Lee, Macromol. Res., 12, 225 (2004)   DOI
2 J. S. Song, F. Tronc, and M. A. Winnik, J. Am. Chem. Soc., 126, 6562 (2004)   DOI   ScienceOn
3 W. H. Ming, J. Zhao, X. L. Lu, C. C. Wang, and S. K. Fu, Macromolecules, 29, 7678 (1996)   DOI   ScienceOn
4 C. Charcosset and H. Fessi, Rev. Chem. Eng., 21, 1 (2005)   DOI
5 L. Capretto, S. Mazzitelli, C. Balestra, A. Tosi, and C. Nastruzzi, Lab Chip, 8, 617 (2008)   DOI   ScienceOn
6 W. H. Tan and S. Takeuchi, Adv. Mater., 19, 2696 (2007)   DOI   ScienceOn
7 E. J. Tull, P. N. Bartlett, and K. R. Ryan, Langmuir, 23, 7859 (2007)   DOI   ScienceOn
8 C. H. Choi, J. H. Jung, Y. W. Rhee, D. P. Kim, S. E. Shim, and C. S. Lee, Biomed. Microdevices, 9, 855 (2007)   DOI   ScienceOn
9 J. W. Lee, J. U. Ha, S. Choe, C. S. Lee, and S. E. Shim, J. Colloid Interf. Sci., 298, 663 (2006)   DOI   ScienceOn
10 C. J. Cheng, L. Y. Chu, P. W. Ren, H. Zhang, and L. Hu, J. Colloid Interf. Sci., 313, 383 (2007)   DOI   ScienceOn
11 M. B. Mellott, K. Searcy, and M. V. Pishko, Biomaterials, 22, 929 (2001)   DOI   ScienceOn
12 D. Dendukuri, T. A. Hatton, and P. S. Doyle, Langmuir, 23, 4669 (2007)   DOI   ScienceOn
13 H. Jung, K. Lee, S. E. Shim, S. Yang, J. M. Lee, H. Lee, and S. Choe, Macromol. Res., 12, 512 (2004)   DOI
14 B. G. De Geest, J. P. Urbanski, T. Thorsen, J. Demeester, and S. C. De Smedt, Langmuir, 21, 10275 (2005)   DOI   ScienceOn
15 S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides, Angew. Chem. Int. Edit., 44, 724 (2005)   DOI   ScienceOn
16 D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, Lab Chip, 7, 818 (2007)   DOI   ScienceOn
17 Z. F. Liu, H. N. Xiao, and N. Wiseman, J. Appl. Polym. Sci., 76, 1129 (2000)   DOI   ScienceOn
18 N. C. Christov, K. D. Danov, D. K. Danova, and P. A. Kralchevsky, Langmuir, 24, 1397 (2008)   DOI   ScienceOn
19 Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva, J. Am. Chem. Soc., 127, 8058 (2005)   DOI   ScienceOn
20 M. Schindler and A. Ajdari, Phys. Rev. Lett., 100, 044501 (2008)   DOI   ScienceOn