• Title/Summary/Keyword: Dislocation resistance

Search Result 61, Processing Time 0.023 seconds

Evaluation of the Friction Welding Properties on SUS304 Alloy (SUS304합금의 마찰접합특성 평가)

  • Y. -K. Kim;K. -H. Song;J. -K. Chung;T. -K. Ha
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2024
  • The friction welding characteristics of stainless steels, mainly used in energy and chemical plant industries due to its excellent corrosion resistance and high strength, was evaluated in this study. Friction welding was introduced and conducted at a rotation speed of 2,000 RPM, friction pressure of 30 MPa, burn-off length of 5 mm and upset pressure of 110 ~ 200 MPa on rod typed specimens. The grain boundary characteristics distributions such a grain size, shape, misorientation angle and kernel average misorientation of the welds were clarified by electron backscattering diffraction method. The application of friction welding on SUS304 alloy resulted in a significant refinement of the grain size in the weld zone (5.11 mm) compared to that of the base material (48.09 mm). The mechanical properties of the welds, on the other hand, appeared to be relatively low or similar to those of the base material, which were mainly caused by dislocation density in the initial material and grain refinement in the welds.

Effect of Scrap Impurities on Microstructure and Mechanical Properties of Zr Alloys (스크랩 불순물이 Zr 합금의 미세조직 및 기계적 특성에 미치는 영향)

  • Jeong, Gu Beom;Kim, In Won;Song, Jae Sook;Shin, Pyung Woo;Hong, Sun Ig
    • Journal of Korea Foundry Society
    • /
    • v.36 no.3
    • /
    • pp.81-87
    • /
    • 2016
  • In this study, the effect of scrap ratio on the mechanical properties of Zr alloys was studied. Oxygen content in the ingot cake increased rapidly with increasing fraction of scrap, which can be attributed to the surface oxide of scrap including small pieces of turning, chips, etc. Iron content did not increase much with the increasing addition of scrap, suggesting scrap materials was well reserved in the iron-free container. As-cast structure of Zr alloy with the scrap:sponge ratio displayed plate/or needle ${\alpha}$ phase and no appreciable change of the cast structure was observed with change of scrap fraction. The strength increases with increasing fraction of scrap, which can be attributed to the increase of oxygen content. The ductility decreased slightly with increase of scrap fraction. Dislocation-oxygen interaction is known to increase the strength at the expense of ductility. Ingot cake with intentionally added $Fe_2O_3$ exhibited the drastic decrease of the formability, even exhibited the brittle fracture behavior during rolling. The oxidation resistance, however, increased with the increase of scrap fraction because of high oxygen content, which may prevent more penetration and diffusion of oxygen into matrix.

A Case of Tracheostomy Induced Bilateral Tension Pneumothorax (급성호흡부전 환자에서 기관절개술 시술 후에 발생한 양측성 긴장성 기흉 1예)

  • Yoon, Hyeon Young;Oh, Suk Ui;Park, Jong Gyu;Sin, Tae Rim;Park, Sang Myeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.62 no.5
    • /
    • pp.437-440
    • /
    • 2007
  • Tracheostomy is one of the oldest surgical procedures in medical history. The indications for a tracheostomy include the relief of an upper airway obstruction, long-term mechanical ventilation, and decreased airway resistance to help wean the patient from mechanical ventilator support. Unfortunately, tracheostomy is also associated with a number of problems including, bleeding, infection, pneumothorax, and tracheal stenosis. A pneumothorax is an uncommon complication of a tracheostomy, and can result from direct injury to the pleura or positive pressure ventilation through a dislocation of the tracheostomy tube. We report an uncommon case of a tracheostomy-induced bilateral tension pneumothorax with a review of the literature.

Nondestructive Evaluation of Fatigue Damage (피로손상과 비파괴평가)

  • Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • In order to determine the mode I stress intensity factor ($K_I$) by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a paramagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effects of the magnetic flux and the demagnetization on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. The change in potential drop was linearly decreased with increasing the tensile load and was caused by the change in conductivity near the crack tip. The reason of decreasing the change in potential drop with increasing the tensile load was that the increase of the conductivity near the crack tip due to the tensile load caused the decreases of the resistance and internal inductance of the specimen. The relationship between the change in potential drop and the change in $K_I$ was not affected by demagnetization and was independent of the crack length.

  • PDF

Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy (2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구)

  • Kim Jeoung Han;Yeom Jong Taek;Park Nho Kwang;Lee Chong Soo
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.681-688
    • /
    • 2005
  • The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

Mechanical and Oxidation Properties of Cold-Rolled Zr-Nb-O-S Alloys

  • Lee, Jong-Min;Nathanael, A.J.;Shin, Pyung-Woo;Hong, Sun-Ig;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • The stress-strain responses and oxidation properties of cold-rolled Zr-1.5Nb-O and Zr-1.5Nb-O-S alloys were studied. The U.T.S. (ultimate tensile strength) of cold-rolled Zr-1.5Nb-O-S alloy with 160 ppm sulfur (765 MPa) were greater than that of Zr-1Nb-1Sn-0.1Fe alloy (750 MPa), achieving an excellent mechanical strength even after the elimination of Sn, an effective solution strengthening element. The addition of sulfur increased the strength at the expense of ductility. However, the ductile fracture behavior was observed both in Zr-Nb-O and Zr-Nb-O-S alloys. The beneficial effect of sulphur on the strengthening was observed in the cold rolled Zr-1.5Nb-O-S alloys. The activation volume of cold-rolled Zr-1.5Nb decreased with sulfur content in the temperature region of dynamic strain aging associated with oxygen atoms. Insensitivity of the activation volume to the dislocation density and the decrease of the activation volume at a higher temperature where the dynamic strain aging occurs support the suggestion linking the activation volume with the activated bulge of dislocations limited by segregation of oxygen and sulfur atoms. The addition of sulfur was also found to improve the oxidation resistance of Zr-Nb-O alloys.

Effect of Tempering Treatment on Mechanical Properties of Ausformed Martensite in Fe-30% Ni-0.35%C Alloy (Fe-30%Ni-0.35%C 합금에서 Ausformed Martensite의 기계적 성질에 미치는 Tempering처리의 영향)

  • Lee, E.K.;Lee, K.B.;Kim, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.44-52
    • /
    • 1994
  • In order to investigate the effect of tempring treatment on the mechanical properties of ausformed martensite in Fe-30%Ni-0.35%C alloy, the hardness, yield strength and elongation were examined by tensile test. 1. The strength of deformed austenite in Fe-30%Ni-0.35%C alloy was increased due to the work hardening induced from the dislocation density increased during deformation. The strength of ausformed martensite was increased because of defects inherited from deformed austenite by martensitic transformation. 2. The ductility of ausformed martensite was shown a nearly constant values independent of deformation degrees because of the interaction of multiple factors such as increased retained austenite, formation of void and decrement of twin in ausformed martensite. 3. The strength of ausformed martensite by tempering treatment was shown a little decrement up to $340^{\circ}C$, especially showed remarkable softening resistance in higher deformation degrees. 4. Virgin martensite and ausformed martensite were shown a maximum yield strength by clustering in tempering at $100^{\circ}C$ and above $100^{\circ}C$, yield strength was very small decreased due to the decrement of solute carbon by the destruction of clustering. 5. The decomposition of retained austenite was not shown up to $450^{\circ}C$ in ausformed martensite with tempering treatment, and the matrix was rapidly softening because of the decomposition of martensite and the formation of reversed austenite with tempering above $400^{\circ}C$.

  • PDF

Dynamic Deformation Behavior of Ultra-Fine-Grained Pure Coppers Fabricated by Equal Channel Angular Pressing (ECAP으로 제조된 초미세립 순동의 동적 변형거동)

  • Kim, Yang Gon;Hwang, Byoungchul;Lee, Sunghak;Lee, Chul Won;Shin, Dong Hyuk
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.545-553
    • /
    • 2008
  • Dynamic deformation behavior of ultra-fine-grained pure coppers fabricated by equal channel angular pressing (ECAP) was investigated in this study. Dynamic torsional tests were conducted on four copper specimens using a torsional Kolsky bar, and then the test data were analyzed by their microstructures and tensile properties. The 1-pass ECAP'ed specimen consisted of fine dislocation cell structures elongated along the ECAP direction, which were changed to very fine, equiaxed subgrains of 300~400 nm in size as the pass number increased. The dynamic torsional test results indicated that maximum shear stress increased with increasing ECAP pass number. Adiabatic shear bands were not found at the gage center of the dynamically deformed torsional specimen of the 1- or 4-pass ECAP'ed specimen, while some weak bands were observed in the 8-pass ECAP'ed specimen. These findings suggested that the grain refinement according to the ECAP was very effective in strengthening of pure coppers, and that ECAP'ed coppers could be used without serious reduction in fracture resistance under dynamic torsional loading as adiabatic shear bands were hardly formed.

Effects of Heat Treatment on Secondary Phase Formation and Nanoindentation Creep Behavior of Nanocrystalline CoCrFeMnNi High-entropy alloy (나노결정립 CoCrFeMnNi 고엔트로피합금의 열처리에 따른 이차상 형성 및 나노압입 크리프 거동 변화 연구)

  • Dong-Hyun Lee;Jae-il Jang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.128-136
    • /
    • 2023
  • In this study, the effects of heat treatment on the nano-scale creep behavior of CoCrFeMnNi high-entropy alloy (HEA) processed by high-pressure torsion (HPT) was investigated through nanoindentation technique. Nanoindentation experiments with a Berkovich indenter were performed on HPT-processed alloy subjected to heat treatment at 450℃, revealing that the hardness of the HPT-processed alloy (HPT sample) significantly increased with the heat treatment time. The heat treatment-induced microstructural change in HPT-processed alloy was analyzed using transmission electron microscopy, which showed the nano-sized Cr-, NiMn-, and FeCo-rich phases were formed in the HPT-processed alloy subjected to 10 hours of heat treatment (HPT+10A sample). To compare the creep behavior of HPT and HPT+10A samples, constant load nanoindentation creep experiments were performed using spherical indentation indenters with two different radii. It was revealed that the predominant mechanism for creep highly depended on the applied stress level. At low stress level, both HPT and HPT+10A samples were dominated by Coble creep. At high stress level, however, the mechanism transformed to dislocation creep for HPT sample, but continued to be Coble creep for HPT+10A sample, leading to higher creep resistance in the HPT+10A sample.

Effects of Plastic Deformation on Surface Properties and Microstructure of Alloy 690TT Steam Generator Tube (증기발생기 전열관 Alloy 690TT의 소성변형이 표면특성 및 미세조직에 미치는 영향)

  • Soon-Hyeok Jeon;Ji-Young Han;Hee-Sang Shim;Sung-Woo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Denting of steam generator (SG) tube is defined as the reduction in tube diameter due to the stresses exerted by the corrosion products formed on the outer diameter surface. This phenomenon is mostly observed in the crevices between SG tube and the top-of tubesheet or tube support plate. Despite the replacement of SG tube with Alloy 690, which has better corrosion resistance than Alloy 600, the denting of SG tube still remains a potential problem that could decrease the SG integrity. Deformation of SG tube by denting phenomenon can affect the surface properties and microstructure of SG tube. In this study, the effects of plastic deformation on surface properties and microstructure of Alloy 690 thermally treated (TT) tube was investigated by using the various analysis techniques. The plastic deformation of Alloy 690 increased the surface roughness and area. Many surface defects such as ripped surface and micro-cracks were observed on the deformed Alloy 690TT specimen. Based on the electron backscatter diffraction analysis, the dislocation density of deformed SG tube increased compared to non-deformed SG tube. In addition, the effects of changes in surface properties and microstructure of SG tube on general corrosion behavior were discussed.