• 제목/요약/키워드: Dislocation distribution

검색결과 56건 처리시간 0.024초

Quantitative Evaluation of Dislocation Density in Epitaxial GaAs Layer on Si Using Transmission Electron Microscopy

  • Kim, Kangsik;Lee, Jongyoung;Kim, Hyojin;Lee, Zonghoon
    • Applied Microscopy
    • /
    • 제44권2호
    • /
    • pp.74-78
    • /
    • 2014
  • Dislocation density and distribution in epitaxial GaAs layer on Si are evaluated quantitatively and effectively using image processing of transmission electron microscopy image. In order to evaluate dislocation density and distribution, three methods are introduced based on line-intercept, line-length measurement and our coding with line-scanning method. Our coding method based on line-scanning is used to detect the dislocations line-by-line effectively by sweeping a thin line with the width of one pixel. The proposed method has advances in the evaluation of dislocation density and distribution. Dislocations can be detected automatically and continuously by a sweeping line in the code. Variation of dislocation density in epitaxial GaAs films can be precisely analyzed along the growth direction on the film.

저탄소 Dual Phase강의 가공시효에 미치는 탄소유효확산 및 전위분포의 영향 (Effects of Dislocation Distribution and Carbon Effective Diffusion on Strain Aging Behavior of a Low Carbon Dual Phase Steel)

  • 유상협;정기채;홍기하;박경태
    • 소성∙가공
    • /
    • 제30권5호
    • /
    • pp.226-235
    • /
    • 2021
  • The strain aging behavior of a low carbon dual phase steel was examined in two conditions: representing room temperature strain aging (100 ℃ × 1 hr after 7.5 % prestrain) and bake hardening process (170 ℃ × 20 min after 2 % prestrain), basing on carbon effective diffusion and dislocation distribution. The first principle calculations revealed that (Mn or Cr)-vacancy-C complexes exhibit the strongest attractive interaction compared to other complexes, therefore, act as strong trapping sites for carbon. For room temperature strain aging condition, the carbon effective diffusion distance is smaller than the dislocation distance in the high dislocation density region near ferrite/martensite interfaces as well as ferrite interior considering the carbon trapping effect of the (Mn or Cr)-vacancy-C complexes, implying ineffective Cottrell atmosphere formation. Under bake hardening condition, the carbon effective diffusion distance is larger compared to the dislocation distance in both regions. Therefore, formation of the Cottrell atmosphere is relatively easy resulting in to a relatively large increase in yield strength under bake hardening condition.

$ZnWO_4$ 단결정 성장과 결함 (The Growth of Defects $ZnWO_4$ Single Crystals)

  • 조병곤;오근호
    • 한국세라믹학회지
    • /
    • 제27권4호
    • /
    • pp.447-456
    • /
    • 1990
  • ZnWO4 single crystals were grown by Czochralski method. And the orientation of grown crystals were determined by Laue back reflection, and the crystals were siliced at (100), (010), (001) face before polishing. The morphologys and distribution of etch pits on each face were observed by optical microscopy. In the present study, we understood that dislocation distributjioon rely on shape of solid-liquid interface, and secondary phase acts on the dislocation source. We also observed dislocation trace(etch pits) of (100) slip plane on (010) cleavage plane.

  • PDF

12% Cr 강의 크리이프중 전위거동에 관한 연구 (Study on the Dislocation Behavior during Creep in 12% Chromium Steel)

  • 오세욱;장윤석
    • 한국해양공학회지
    • /
    • 제4권2호
    • /
    • pp.262-262
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

12% Cr 강의 크리이프중 전위거동에 관한 연구 (Study on the Dislocation Behavior during Creep in 12% Chromium Steel)

  • 오세욱;장윤석
    • 한국해양공학회지
    • /
    • 제4권2호
    • /
    • pp.112-120
    • /
    • 1990
  • In order to check the effect of dislocation behavior on creep rate in 12% Chromium steel, 14 samples of different compositions were examined by creep rupture test, and subgrain sizes, distribution of dislocations and precipitates were checked. And, authors reviewed the behaviors of dislocations, the formation and growth of subgrains and precipitates during creep. The results are as the following: 1) Creep rates calculated by .epsilon. over dot = .rho.bv show 10-15% higher values than actual data measured. However, authors conclude that the density and velocity of dislocations together with subgrain size are important factors governing deformation during creep in 12% chromium steel. 2) The values of the strength of obstacles in the mobility of dislocations are more clearly depended on the effective stress in the range of $10{\pm}5kgf/mm^{2}$ and increase with the increase of temperature. 3) Creep rates decrease with the smaller sizes of subgrains formed and can result in the longer creep rupture lives(hours). The smaller subgrains can be made by forming shorter free gliding distances of dislocations with very fine precipitates formed in the matrix during creep by applying proper alloy design. 4) Dislocation mobility gets hindered by precipitates occurring, which are coarsened by the softening process governed by diffusion during long time creep.

  • PDF

방사형식에 의한 미소균열의 파괴메커니즘에 관한 연구 (A Study on the Source Mechanism of Micro-crack by Radiation Pattern)

  • 이상은
    • 지질공학
    • /
    • 제16권2호
    • /
    • pp.179-187
    • /
    • 2006
  • 인공적인 슬릿을 형성한 모르타르와 노치를 형성한 화강암 시편이 이 연구를 위해 사용되었다. 전위이론을 토대로 방사형식에 의한 미소균열의 파괴 메커니즘이 변환기에 탐지된 종파의 초동, 모니터링을 위한 변환기의 위치와 최소자승법 적용에 의해 결정된 파괴원 위치 사이의 공간적인 분포에 의해 평가되었다. 해석결과 전위면의 방위는 육안으로 관찰된 시편의 균열방향과 비교적 잘 일치하였다. 이 연구의 궁극적인 목적은 암석재료내 미소균열의 파괴 메커니즘에 관한 기본적인 정보를 제공하는데 있다.

Microstructural engineering of dual phase steel to aid in bake hardening

  • Banerjee, M.K.
    • Advances in materials Research
    • /
    • 제4권1호
    • /
    • pp.1-12
    • /
    • 2015
  • Low carbon steel of composition 0.05C - 0.18 Mn - 0.012 Si is intercritically annealed at temperatures $750^{\circ}C$, $775^{\circ}C$ and $800^{\circ}C$. The equilibrated alloys of different amounts of austenite with varying carbon contents are quenched in iced water. The same alloys are subcritically annealed at $675^{\circ}C$ and $700^{\circ}C$ for varying periods of times; the subcritically annealed alloy samples are quenched in iced water. Optical, scanning electron and transmission electron microscopy are carried out for all the samples. The dislocation structure, its distribution and density present in the above prepared duplex ferrite martensite steels are studied. The martensites are found to be highly dislocated due to lattice invariant deformation. At the same time ferrite adjoining the martensite areas also exhibits quite a high dislocation density. The high dislocation density is favorable for strain ageing and hence bakes hardenability. EDS analyses were carried out for both martensite and ferrite phases; it is found that the degree of supersaturation in ferrite together with carbon content in martensite varies with the process parameters. The microhardness test results show that the hardness values of different phases differ appreciably with process parameters. The microstructures and the corresponding microanalyses reveal that differently processed steels contain phases of varying compositions and different distribution.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

전위모델 을 이용한 2차원 응력해석 (2-D Stress Analysis by a Dislocation Model)

  • 구인회
    • 대한기계학회논문집
    • /
    • 제9권1호
    • /
    • pp.10-17
    • /
    • 1985
  • 본 논문의 목적은 앞서의 크랙대신 2차원 탄성문제의 경계를 따라 절편적인 전위(discrete edge dislocation)를 분포시켜 경계응력과 평형을 이루는 전위벡타의 크기를 얻고 이들로 부터 영역내 임의의 점에서 응력을 얻는데 있다. 크랙에 대한 전위이론의 적용에서와는 달리 여기서는 경계가 폐곡선을 이루므로 이에따른 전위분 포 방법이 논의 되었다. 또한 이 방법의 실용성을 알기위해 4가지 경우에 적용되 어 얻어진 수치해의 특성이 개별적으로 검토 되었다. 이들 경우에 대해서는 전위 분포법이 유한요소법에 비해 효율적이었다. 이 방법의 확장, 개선점, 일반적인 평 가 특히 계산능률면에서 다른 수치적 방법과의 광범위한 비교평가등이 앞으로 연구될 수 있는 과제라고 판단된다.

Al-Mg합금의 압연변수에 다른 미세구조의 변화와 고온인장특성 (The effects of rolling process on microstructures and high temperature tensile properties of Al-Mg alloy)

  • 김태규;전채홍;권숙인;박종우
    • 열처리공학회지
    • /
    • 제10권2호
    • /
    • pp.81-92
    • /
    • 1997
  • The effect of alloying elements, precipitate size, its distribution, and dislocation substructure resulted from warm rolling or cold rolling in the superplastic Al-Mg alloy system was investigated. One of the major requirements for fine structure superplasticity is that the grain size should be very small. Fine grain structure is controlled by the dislocation substructure and the dynamic recrystallization during hot or warm working. The recovery of Al-Mg base alloys was constrained resulting in relatively high dislocation density when the alloys were warm rolled. In particular, Al-Mg-Zr alloy exhibited the smallest sub-grain size among Al-Mg alloys containing Mn, Cu, Zr as a third element. The Al-Mg-Mn alloy cold rolled 80% after hot rolling showed the maximun strain rate sensitivity exponent, m, of 0.75 under strain rate of $7.1{\times}10^{-4}/s$ at $500^{\circ}C$. The elongation of the alloys was limited in spite of high m values due to large dispersoids containing appreciable amount of Fe impurities.

  • PDF