• 제목/요약/키워드: Dislocation Channeling

검색결과 3건 처리시간 0.016초

STRAIN LOCALIZATION IN IRRADIATED MATERIALS

  • Byun, Thaksang;Hashimoto, Naoyuki
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.619-638
    • /
    • 2006
  • Low temperature irradiation can significantly harden metallic materials and often lead to strain localization and ductility loss in deformation. This paper provides a review on the radiation effects on the deformation of metallic materials, focusing on microscopic and macroscopic strain localization phenomena. The types of microscopic strain localization often observed in irradiated materials are dislocation channeling and deformation twinning, in which dislocation glides are evenly distributed and well confined in the narrow bands, usually a fraction of a micron wide. Dislocation channeling is a common strain localization mechanism observed virtually in all irradiated metallic materials with ductility, while deformation twinning is an alternative localization mechanism occurring only in low stacking fault energy(SFE) materials. In some high stacking fault energy materials where cross slip is easy, curved and widening channels can be formed depending on dose and stress state. Irradiation also prompts macroscopic strain localization (or plastic instability). It is shown that the plastic instability stress and true fracture stress are nearly independent of irradiation dose if there is no radiation-induced phase change or embrittlement. A newly proposed plastic Instability criterion is that the metals after irradiation show necking at yield when the yield stress exceeds the dose-independent plastic instability stress. There is no evident relationship between the microscopic and macroscopic strain localizations; which is explained by the long-range back-stress hardening. It is proposed that the microscopic strain localization is a generalized phenomenon occurring at high stress.

GaAs on Si substrate with dislocation filter layers for wafer-scale integration

  • Kim, HoSung;Kim, Tae-Soo;An, Shinmo;Kim, Duk-Jun;Kim, Kap Joong;Ko, Young-Ho;Ahn, Joon Tae;Han, Won Seok
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.909-915
    • /
    • 2021
  • GaAs on Si grown via metalorganic chemical vapor deposition is demonstrated using various Si substrate thicknesses and three types of dislocation filter layers (DFLs). The bowing was used to measure wafer-scale characteristics. The surface morphology and electron channeling contrast imaging (ECCI) were used to analyze the material quality of GaAs films. Only 3-㎛ bowing was observed using the 725-㎛-thick Si substrate. The bowing shows similar levels among the samples with DFLs, indicating that the Si substrate thickness mostly determines the bowing. According to the surface morphology and ECCI results, the compressive strained indium gallium arsenide/GaAs DFLs show an atomically flat surface with a root mean square value of 1.288 nm and minimum threading dislocation density (TDD) value of 2.4×107 cm-2. For lattice-matched DFLs, the indium gallium phosphide/GaAs DFLs are more effective in reducing the TDD than aluminum gallium arsenide/GaAs DFLs. Finally, we found that the strained DFLs can block propagate TDD effectively. The strained DFLs on the 725-㎛-thick Si substrate can be used for the large-scale integration of GaAs on Si with less bowing and low TDD.

Retrograde Well 형성을 위한 고에너지 이온주입에 대한 연구 (A Study on High Energy Ion Implantation for Retrograde Well Formation)

  • 윤상현;곽계달
    • 한국전기전자재료학회논문지
    • /
    • 제11권5호
    • /
    • pp.358-364
    • /
    • 1998
  • Retrograde well is a new process for ULSI fabrication. High energy ion implantation has been used for retrograde well formation. In this paper the forming condition for retrograde well using high energy ion implantation is compared with that for conventional well. TW signals for retrograde p-,n-well($900^{\circ}C$),after annealing are similar trends to those of conventional ones($1150^{\circ}C$), however the signals for RTA have the highest value because of small thermal budget. Junction depths of retrograde well are varied from about 1.2 to $3.0\{mu}m$ as for conventional well. The peak concentrations of retrograde well, however, are about 10 times higher in values than those of conventional ones so that they can be used as any types of potential barriers or gettering sites. The critical dose for phosphorus implantation in our experiments is between $3\times10^{13} and 1\times10^{14}/cm^2$. Under the above critical dose, there are many secondary defects near projected range such as dislocation lines and dislocation loops.

  • PDF