• Title/Summary/Keyword: Dislocation Behavior

Search Result 162, Processing Time 0.026 seconds

Radiation damage analysis in SiC microstructure by transmission electron microscopy

  • Idris, Mohd Idzat;Yoshida, Katsumi;Yano, Toyohiko
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.991-996
    • /
    • 2022
  • Microstructures of monolithic high purity SiC and SiC with sintering additives after neutron irradiation to a fluence of 2.0-2.5 × 1024 n/m2 (E > 0.1 MeV) at 333-363 K and after post-irradiation annealing up to 1673 K were observed using a transmission electron microscopy. Results showed that no black spot defects or dislocation loops in SiC grains were found after the neutron irradiation for all of the specimens owing to the moderate fluence at low irradiation temperature. Thus, it is confirmed that these specimens were swelled mostly by the formation of point defects. Black spots and small dislocation loops were discovered only after the annealing process in PureBeta-SiC and CVD-SiC, where the swelling almost diminished. Anomalous-shaped YAG grains were found in SiC ceramics containing sintering additives. These grains contained dense black spots defects and might lose crystallinity after the neutron irradiation, while these defects may annihilate by recrystallization during annealing up to 1673 K. Amorphous grain boundary phase was also presented in this ceramic, and a large part of it was crystallized through post-irradiation annealing and could affect their recovery behavior.

Fatigue Behavior of 23Cr26Ni Heat Resistant Steel (23Cr26Ni 내열강의 피로 특성)

  • Lee, H.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2011
  • The influence of the cooling condition after solution treatment on the high temperature fatigue resistance of 23Cr-26Ni heat resistant steel was investigated. Two different cooling conditions were applied to the steel after solution treatment at $1200^{\circ}C$ for 3 hours. One specimen was water quenched immediately after the solution treatment. The other one was furnace cooled at a rate of $0.5^{\circ}C/min$ down to $750^{\circ}C$ after the solution treatment. Then, both specimens were aged at $750^{\circ}C$ for 5 hours. Under two different heat treatment conditions, the low cycle fatigue (LCF) test was performed at $600^{\circ}C$ and room temperature (RT). Only cyclic hardening continued from the beginning until fracture at all strain amplitudes during LCF at $600^{\circ}C$. This phenomenon was attributed to the increase in the dislocation density due to cyclic deformation, which resulted in the interaction between the newly created dislocations and precipitates. Cyclic hardening followed by saturation and cyclic softening was observed at RT. Cyclic softening was attributed to the dislocation annihilation rate exceeding the dislocation generation rate. Other probable factor for cyclic softening was some cavities formed around grain boundaries after 20 cycles. WQ and FC have a similar LCF behavior at RT and $600^{\circ}C$ as shown in the cyclic stress response curves.

Tensile Behavior Characteristics of CANDU Pressure Tube Material Degraded by Neutron Irradiations (중수로 압력관 재료의 조사 열화에 따른 인장거동 특성)

  • An, Sang-Bok;Kim, Yeong-Seok;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.188-195
    • /
    • 2002
  • To investigate the degradation of mechanical properties induced mainly by neutron irradiation, the tensile tests were conducted from room temperature to 300\\`c using the irradiated and the unirradiated Zr-2.5Nb pressure tube materials. The irradiated longitudinal and transverse specimens were collected from the coolant inlet, middle, and outlet parts of M-11 tube which had been operated in Wolsung CANDU Unit-1 and exposed to different operating temperatures and irradiation fluences. The different tensile behavior was characterized not by the fluences of irradiation but by the tensile loading direction. The transverse specimen showed the higher strength and lower elongation than those of the longitudinal one. It was believed that these phenomena resulted from the microstructure anisotropy caused by the extrusion process. The increased strength hardening and decreased elongation embrittlement of the irradiated material were compard to those of the unirradiated one. While the tensile strength of the inlet was higher than that of the outlet, the elongation of the inlet was lower than that of outlet. Considering the operation condition, it was proposed that the operating temperature could be a more effective parameter than the irradiation fluence for long-time life. Through the TEM observation, it was found that while the a-type dislocation density was increased, the c-type dislocation was not changed in the irradiated. The fact that the higher dislocation density was sequentially distributed over the inlet, the middle, and the outlet parts was consistent with the distribution of the tensile strength.

The Influence of Temperature and Strain Rate on the Mechanical Behavior in Uranium

  • Lee, Key-Soon;Park, Won-Koo
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 1978
  • The effect of temperature and strain rate on the deformation behavior of $\alpha$-uranium was investigated in the temperature ranged 300$^{\circ}$ to 55$0^{\circ}C$ by strain, rate change test. Strain rate sensitivity, activation volume, strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent and dislocation velocity exponent were determined. The strain rate sensitivity exponent increases with strain below 40$0^{\circ}C$, while the exponent decreases with strain above 50$0^{\circ}C$. It is believed that the increase of strain rate sensitivity exponent with strain below 40$0^{\circ}C$ can be attributed to an increase in internal stress as a result of work hardening while decrease of the exponent with strain above 50$0^{\circ}C$ is due to predominance of thermal softening over work hardening because more slip, system are active in deformation above about 50$0^{\circ}C$.

  • PDF

Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing (나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석)

  • 윤승채;김형섭;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.

Analysis of Electronic Materials Using Transmission Electron Microscopy (TEM) (전자현미경을 이용한 전자재료분석)

  • Kim, Ki-Bum
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.132-144
    • /
    • 1994
  • The application of TEM in investigating the evolution of microstructure during solid phase crystallization of the amorphous Si, $Si_{1-x}Ge_x,\;and\;Si_{1-x}Ge_x/Si$ films deposited on $SiO_2$ substrate, in identifying the failure mechanism of the TiN barrier layer in the Cu-metallization scheme, and in comparing the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films are discussed. First, it is identified that the evolution of microstructure in Si and $Si_{1-x}Ge_x$ alloy films strongly depends on the concentration of Ge in the film. Second, the failure mechanism of the TiN diffusion barrier in the Cu-metallization is the migration of the Cu into the Si substrate, which results in the formation of a dislocation along the Si {111} plane and precipitates (presumably $Cu_{3}Si$) around the dislocation. Finally, the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films is also quite different in these two cases. From these several cases, we demonstrate that the information which we obtained using TEM is critical in understanding the behavior of materials.

  • PDF

A Physically Based Dynamic Recrystallization Model for Predicting High Temperature Flow Stress (열간 유동응력 예측을 위한 물리식 기반 동적 재결정 모델)

  • Lee, H.W.;Kang, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.450-455
    • /
    • 2013
  • In the current study, a new dynamic recrystallization model for predicting high temperature flow stress is developed based on a physical model and the mean field theory. In the model, the grain aggregate is assumed as a representative volume element to describe dynamic recrystallization. The flow stress and microstructure during dynamic recrystallization were calculated using three sub-models for work hardening, for nucleation and for growth. In the case of work hardening, a single parameter dislocation density model was used to calculate change of dislocation density and stress in the grains. For modeling nucleation, the nucleation criterion developed was based on the grain boundary bulge mechanism and a constant nucleation rate was assumed. Conventional rate theory was used for describing growth. The flow stress behavior of pure copper was investigated using the model and compared with experimental findings. Simulated results by cellular automata were used for validating the model.

Characterization of Dislocations in 4H-SiC Epitaxy Using Molten-KOH Etching (KOH Etching을 통한 4H-SiC Epitaxy 박막에서의 전위결함 거동)

  • Shin, Yun-Ji;Kim, Won-Jeong;Moon, Jeong-Hyun;Bahng, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.779-783
    • /
    • 2011
  • The morphology of etch pits in commercial 4H-SiC epi-wafer were investigated by molten-KOH etching. The etching process was optimized in $525{\sim}570^{\circ}C$ at 2~10 min and the novel type of etch pits was revealed. This type of etch pits have been considered as TED (threading edge dislocation) II, its origin and nature, however, are not reported yet. In this work, the morphology and evolution of etch pits during epitaxial growth were analyzed and the different behavior between TED and TEDII was discussed.

Study on the Recovery and Recrystalligation of Cold-lolled Zr-based Alloys by Thermoelectric Power Measurement During Isothermal Annealing (TEP 분석을 이용한 냉간가공된 Zr-based 합금의 등온열처리에 따른 회복 및 재결정 거동에 관한 연구)

  • O, Yeong-Min;Jeong, Heung-Sik;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.483-491
    • /
    • 2001
  • The recovery and recrystallization behavior of cold-rolled Zr-based alloys during isothermal annealing at temperatures from $575^{\circ}C$ to $650^{\circ}C$ was studied by thermoelectric power and Vickers microhardness measurement. The recovery and recrystallization resulted in the increase of TEP doe to the extinction of lattice defect, vacancy, dislocation and stacking fault during isothermal annealing after cold- rolling. The completion of recrystallization could be determined much clearly by TEP behavior than by microhardness change in Zr-based alloys. Especially, the recovery and recrystallization were classified separately by TEP behavior in Zr-0.4Nb-xSn alloys. From the analysis of TEP behavior and microhardness, the addition of Sn caused to form the interaction between stain field and dislocation, which resulted in the delay of recovery in Zr-based alloys. The precipitation due the addition of Nb suppressed the grain growth after recrystallization effectively in Zr-based alloys.

  • PDF

Effect of slip system transition on the deformation behavior of Mg-Al alloy: internal variable based approach (비탄성 변형 이론을 바탕으로 한 Mg-Al 합금의 슬립기구 천이 현상 해석)

  • Lee H. S.;Bang W.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.186-189
    • /
    • 2004
  • Although magnesium has high potential for structural material due to the lightweight and high specific strength, the structural application has been limited by the low ductility at room temperature. The reason of the poor ductility is few activated slip systems of magnesium (HCP structure) during deformation. As temperature increases, however, additional non-basal slip systems are incorporated to exhibit higher ductility comparable to aluminum. In the present study, a series of tensile tests of Mg-Al alloy has been carried out to study deformation behavior with temperature variation. Analysis of load relaxation test results based on internal variable approach gave information about relationship between the micromechanical character and corresponding deformation behavior of magnesium. Especially, the material parameter, p representing dislocation permeability through barriers was altered from 0.1 to 0.15 as the non-basal slip systems were activated at high temperature.

  • PDF