• Title/Summary/Keyword: Dislocated metric

Search Result 5, Processing Time 0.019 seconds

SOME NEW COMMON FIXED POINTS OF GENERALIZED RATIONAL CONTRACTIVE MAPPINGS IN DISLOCATED METRIC SPACES WITH APPLICATION

  • Khan, Sami Ullah;Arshad, Muhammad;Rasham, Tahair;Shoaib, Abdullah
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.161-174
    • /
    • 2017
  • The objective of this manuscript is to continue the study of fixed point theory in dislocated metric spaces, introduced by Hitzler et al. [12]. Concretely, we apply the concept of dislocated metric spaces and obtain theorems asserting the existence of common fixed points for a pair of mappings satisfying new generalized rational contractions in such spaces.

EXPANSIVE TYPE MAPPINGS IN DISLOCATED QUASI-METRIC SPACE WITH SOME FIXED POINT RESULTS AND APPLICATION

  • Haripada Das;Nilakshi Goswami
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.245-257
    • /
    • 2024
  • In this paper, we prove some new fixed point results for expansive type mappings in complete dislocated quasi-metric space. A common fixed point result is also established considering such mappings. Suitable examples are provided to demonstrate our results. The solution to a system of Fredholm integral equations is also established to show the applicability of our results.

On the Hyers-Ulam Stability of Polynomial Equations in Dislocated Quasi-metric Spaces

  • Liu, Yishi;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.767-779
    • /
    • 2020
  • This paper primarily discusses and proves the Hyers-Ulam stability of three types of polynomial equations: xn+a1x+a0 = 0, anxn+⋯+a1x+a0 = 0, and the infinite series equation: ${\sum\limits_{i=0}^{\infty}}\;a_ix^i=0$, in dislocated quasi-metric spaces under certain conditions by constructing contraction mappings and using fixed-point methods. We present an example to illustrate that the Hyers-Ulam stability of polynomial equations in dislocated quasi-metric spaces do not work when the constant term is not equal to zero.

COMMON FIXED POINT THEOREMS FOR TWO SELF MAPS SATISFYING ξ-WEAKLY EXPANSIVE MAPPINGS IN DISLOCATED METRIC SPACE

  • Kim, Jong Kyu;Kumar, Manoj;Preeti, Preeti;Poonam, Poonam;Lim, Won Hee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.271-287
    • /
    • 2022
  • In this article, we shall prove a common fixed point theorem for two weakly compatible self-maps 𝒫 and 𝔔 on a dislocated metric space (M, d*) satisfying the following ξ-weakly expansive condition: d*(𝒫c, 𝒫d) ≥ d* (𝔔c, 𝔔d) + ξ(∧(𝔔c, 𝔔d)), ∀ c, d ∈ M, where $${\wedge}(Qc,\;Qd)=max\{d^*(Qc,\;Qd),\;d^*(Qc,\;\mathcal{P}c),\;d^*(Qd,\;\mathcal{P}d),\;\frac{d^*(Qc,\;\mathcal{P}c){\cdot}d^*(Qd,\;\mathcal{P}d)}{1+d^*(Qc,\;Qd)},\;\frac{d^*(Qc,\;\mathcal{P}c){\cdot}d^*(Qd,\;\mathcal{P}d)}{1+d^*(\mathcal{P}c,\;\mathcal{P}d)}\}$$. Also, we have proved common fixed point theorems for the above mentioned weakly compatible self-maps along with E.A. property and (CLR) property. An illustrative example is also provided to support our results.