• 제목/요약/키워드: Disk substrate

검색결과 94건 처리시간 0.04초

경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작 (A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays)

  • 최석문;박성준
    • 융복합기술연구소 논문집
    • /
    • 제1권2호
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

유한요소 해석을 이용한 현장 콘크리트 부착강도 측정조건 (Measurement Conditions of Concrete Pull-off Test in Field from Finite Element Analysis)

  • 김성환;정원경;권혁;김현오;이봉학
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.185-192
    • /
    • 2002
  • The performance of old and the new concrete construction depends upon bond strength between old and the new concrete. Current adhesive and strength measurement method ignores the effect of stress concentration from shape of specimens. Therefore, this research calculates stress concentration coefficient as the ratio of drilling depth to drilling diameter($h_s/D$), the ratio of overlay thickness to drilling diameter($h_0/D$), the ratio of steel disk thickness to drilling diameter(t/D), the ratio of overlay elastic modulus to substrate modulus($E_1/E_0$), the distance from core to corner border(L_$_{corner}$) and the distance between cores(L_$_{coic}$) vary. The finite element method is adapted to analysis The results from 'the F.E.M analysis are as follows. The stress concentration effects can be minimized when the ratio of drilling depth to drilling diameter($h_s/D$) is 0.20~0.25, the elastic modulus ratio($E_1/E_0$) is 06~1.0, and the ratio of steel disk thickness to drilling diameter(t/D) is 3.0. The overlay thickness, the distance from specimens to corner border(L_$_{corner}$), the distance between cores(L_$_{coic}$) almost do not affect to the stress concentration.

  • PDF

Ni-Cr-Mo-V 내열강의 마찰마모 특성 연구 (A Study on Tribological Characteristics for High Temperature Alloy Steel with Ni-Cr-Mo-V)

  • 임호기;배문기;김태규
    • 열처리공학회지
    • /
    • 제29권6호
    • /
    • pp.284-291
    • /
    • 2016
  • High temperature alloy steel such as Ni-Cr-Mo-V material has excellent properties of high strength and high heating resistance. It has been used for several military weapon components such as gun barrel of a warship, turbine rotor and turbine disk for nuclear power plant. Being curious about this material required excellent wear resistance and durability in extreme environmental conditions. A dry wear test at the ambient air and Ar gas conditions in the room temperature were performed in this study. What's more a lubricant wear test at different temperature was conducted. In addition that DLC was coated on Ni-Cr-Mo-V alloy steel substrate with a thickness of $3{\mu}m$, a property of it was compare with lubricant conditions. All the coefficient of friction and wear volume, comparing with DLC coated specimens. The test parameters were selected as follows: 10 N for normal load; 80 rpm for sliding wear speed; and 300 m for the sliding wear distance.

패드 마모 균일성 향상을 위한 CMP 컨디셔닝 시스템 설계 변수 연구 (Design Variables of Chemical-Mechanical Polishing Conditioning System to Improve Pad Wear Uniformity)

  • 박병훈;박범영;전언찬;이현섭
    • Tribology and Lubricants
    • /
    • 제38권1호
    • /
    • pp.1-7
    • /
    • 2022
  • Chemical-mechanical polishing (CMP) process is a semiconductor process that planarizes a wafer surface using mechanical friction between a polishing pad and a substrate surface during a specific chemical reaction. During the CMP process, polishing pad conditioning is applied to prevent the rapid degradation of the polishing quality caused by polishing pad glazing through repeated material removal processes. However, during the conditioning process, uneven wear on the polishing pad is inevitable because the disk on which diamond particles are electrodeposited is used. Therefore, the abrasion of the polishing pad should be considered not only for the variables during the conditioning process but also when designing the CMP conditioning system. In this study, three design variables of the conditioning system were analyzed, and the effect on the pad wear profile during conditioning was investigated. The three design variables considered in this study were the length of the conditioner arm, diameter of the conditioner disk, and distance between centers. The Taguchi method was used for the experimental design. The effect of the three design variables on pad wear and uniformity was assessed, and new variables used in conditioning system design were proposed.

Macroscopic Wear Behavior of C/C and C/C-SiC Composites Coated with Hafnium Carbide

  • Lee, Kee Sung;Sihn, Ihn Cheol;Lim, Byung-Joo;Lim, Kwang Hyun
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.429-434
    • /
    • 2015
  • This study investigates the macroscopic wear behaviors of C/C and C/C-SiC composites coated with hafnium carbide (HfC). To improve the wear resistance of C/C composites, low-pressure chemical vapor deposition (LPCVD) was used to obtain HfC coating. The CVD coatings were deposited at various deposition temperatures of 1300, 1400, and $1500^{\circ}C$. The effect of the substrate material (the C/C substrate, the C/C-CVR substrate, or the C/C-SiC substrate deposited by LSI) was also studied to improve the wear resistance. The experiment used the ball-on-disk method, with a tungsten carbide (WC) ball utilized as an indenter to evaluate the wear behavior. The HfC coatings were found to effectively improve the wear resistance of C/C and C/C-SiC composites, compared with the case of a non-coated C/C composite. The former showed lower friction coefficients and almost no wear loss during the wear test because of the presence of hard coatings. The wear scar width was relatively narrower for the C/C and C/C-SiC composites with hafnium coatings. Wear behavior was found to critically depend on the deposition temperature and the material. Thus, the HfC-coated C/C-SiC composites fabricated at deposition temperatures of $1500^{\circ}C$ showed the best wear resistance, a lower friction coefficient, and almost no loss during the wear test.

지르코니아 광페룰 사출성형용 WC 코아 핀의 Diamond Like Carbon 코팅 (Diamond Like Carbon Coating on WC Core Pin for Injection Molding of Zirconia Optical Ferrule)

  • 박현우;정세훈;김현영;이광민
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.570-574
    • /
    • 2010
  • A diamond-like carbon (DLC) film deposited on a WC disk was investigated to improve disk wear resistance for injection molding of zirconia optical ferrule. The deposition of DLC films was performed using the filtered vacuum arc ion plating (FV-AIP) system with a graphite target. The coating processing was controlled with different deposition times and the other conditions for coating, such as input power, working pressure, substrate temperature, gas flow, and bias voltage, were fixed. The coating layers of DLC were characterized using FE-SEM, AFM, and Raman spectrometry; the mechanical properties were investigated with a scratch tester and a nano-indenter. The friction coefficient of the DLC coated on the WC was obtained using a pin-on-disk, according to the ASTM G163-99. The thickness of DLC films coated for 20 min. and 60 min. was about 750 nm and 300 nm, respectively. The surface roughness of DLC films coated for 60 min. was 5.9 nm. The Raman spectrum revealed that the G peak of DLC film was composed of $sp^3$ amorphous carbon bonds. The critical load (Lc) of DLC film obtained with the scratch tester was 14.6 N. The hardness and elastic modulus of DLC measured with the nano-indenter were 36.9 GPa and 585.5 GPa, respectively. The friction coefficient of DLC coated on WC decreased from 0.2 to 0.01. The wear property of DLC coated on WC was enhanced by a factor of 20.

미끄럼운동시 TiN코팅볼과 스틸디스크의 미끄럼접촉면에 형성되는 산화막의 영향을 고려한 마찰천이선도 작성에 대한 연구 (Friction Transition Diagram Considering the Effects of Oxide Layer Formed on Contact Parts of TiN Coated Ball and Steel Disk in Sliding)

  • 조정우;박동신;이영제
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.335-342
    • /
    • 2003
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk in sliding are investigated. Also wear mechanism to from the oxide layer and the characteristics of the oxide layer formation are investigated. AISI 52100 steel ball is used for the substrate of coated ball specimens. Two types of coated ball specimens were prepared by depositing TiN coating with 1 and 4 ${\mu}{\textrm}{m}$ in coating thickness. AISI 1045 steel is used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of the two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. And to study the effects of surface roughness of counter-body, TiN coating thickness and contact load of sliding test on the characteristics of oxide layer formation on counter-body, various tests were carried out. From the results, the friction characteristics between the two materials was predominated by iron oxide layer that formed on wear track on counter-body and this layer caused the high friction. And the formation rate of the oxide layer on wear track increased as the real contact area between the two materials increased as the contact load increased, the TiN coating thickness decreased and the surface of counter-body smoothened.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

황금추출물의 항균특성 (Antimicrobial Characteristics of Scutellariae Radix Extract)

  • 조성환;김영록
    • 한국식품영양과학회지
    • /
    • 제30권5호
    • /
    • pp.964-968
    • /
    • 2001
  • 향균력이 있는 한약제들 중에서 추출수율과 항균력이 우수한 항금을 대상으로 식중독균에 대한 천연항균제의 적용 가능성을 검토하였다. 황금추출물의 항균작용을 알아보기 위하여 공시균주 Bacillus cereus, Listeria monocytogenes, Escherichia coli, and Vivro parahaemolyticus에 대하여 disk method에 의한 항균력 검사에서 생육어제로 인한 clear zone 이 선명하게 관찰되어 황금추출물의 항균력을 알 수 있었고, 황금추출물의 열 및 PH 안정성을 검토한 결과 다양한 범위의 온도 및 pH에 대해서 매우 안정하다는것을 확인하였으며, 공시균주들에 대한 유효저해농도를 측정한 결과 황금추출물의 농도 500 ppm 이상에서 생육이 억제되었다. 주사형전자현미경(SEM) 상에서는 처리구에서 공시균주들의 세포형태 변화를 볼수 있었고, 투과형전자현미경(TEM)상에서는 처리구에 있어서 공시균주들의 세포막 파괴로 인하여 세포내용물이 용출된 것을 볼 수 있었다. 황금추출물 처리로 인한 세포막 손상정도를 확인하기 위하여 균체내 효소인 $\beta$-gal-actosidase 활성을 정량한 결과 chlorogorm 보다 세포막을 더 손상시키는 것을 확인되었다.

  • PDF

R.F. 스퍼터링법에 의한 상변화형 광디스크의 $(ZnS)_{1-x}-(SiO_2)_x$ 보호막 제조시 기판 바이어스전압의 영향 (The Effects of Substrate Bias Voltage on the Formation of $(ZnS)_{1-x}-(SiO_2)_x$ Protective Films in Phase Change Optical Disk by R.F. Sputtering Method.)

  • 이태윤;김도훈
    • 한국재료학회지
    • /
    • 제8권10호
    • /
    • pp.961-968
    • /
    • 1998
  • 상변화형 광디스크의 보호막으로 사용되는 $ZnS-SiO_2$ 유전체막을 RF magnetron 스퍼트링방법에 의하여 제조하는 경우에 기판 바이어스전압의 영향을 조사하기 위하여, 알곤가스 분위기에서 ZnS(80mol%)-$SiO_2$(20mol%)타겟을 사용하여 Si Wafer와 Corning flass 위에 박막을 증착시켰다. 본 실험에서는 여러 실험 변수를 효과적으로 조절하면서 실험의 양을 줄이고 도시의 산포를 동시에 만족시키는 최적조건으로 타겟 RF 출력 200W, 기판 RF 출력 20W, 아르곤 압력 5mTorr과 증착시간 20분을 얻을 수 있었으며, 신뢰구간 95%에서 확인실험을 수행하였다. 증착된 박막의 열적 저항성을 측정하기 위해 $300^{\circ}C$$600^{\circ}C$에서 열처리시험을 수행하였고, Spectroscopic Ellipsometry 측정을 통한 광학적 데이터를 바탕으로 Bruggeman EMA(Effective Medium Approximation)방법을 이용하여 기공(void)분률을 측정하였다. 본 연구결과에 의하면 특성치 굴절률에 대하여 기판 바이어스인자와 증착시간 사이에는 서로 교호작용이 강하게 존재함을 확인할 수 있었다. TEM분석과 XRD 분석 결과에 의하면 기판 바이어스를 가한 최적조건에서 증착된 미세조직은 기존의 바이어스를 가하지 않을 조건에서 증착시킨 박막보다 미세한 구조를 가지며, 또한 과도한 바이어스전압은 결정구조의 조대화를 야기시켰다. 그리고 적절한 바이어스전압은 박막의 밀도를 증가시키며, 기공분률을 약 3.7%정도 감소시킴을 확인할 수 있었다.

  • PDF