• Title/Summary/Keyword: Disinfection By-Products (DBPs)

Search Result 69, Processing Time 0.023 seconds

A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water II (음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구 II)

  • Lee, Kang Jin;Hong, Jee Eun;Pyo, Heesoo;Park, Song-Ja;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.69-81
    • /
    • 2004
  • The formation pattern of DBPs (disinfection by-products) in raw water treated with hypochlorite, chlorine disinfectant was studied. TOC (total organic carbon), residual chlorine, turbidity and 14 DBPs in raw water from Han-river and Nakdong river during 1 ~ 14 days were determined. Total DBPs in Han river was 101.3 ng/mL (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 68%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively. In Nakdong river total DBPs was 98.4 ng/mL (678.6 nM) and dominant class was HAAs. (55.8 ng/mL, 57%) THMs(34%) and N-compounds like HANs (haloacetonitriles, 5%) and chloropicrin were increased. It may be explained that high concentration of NH4-N in Nakdong river react with chlorine produced chloramine and this formed different pattern of DBPs. As a result, total DBPs formation pattern depends on raw water and disinfectant and in generally the initial concentration of acidic HAAs was high and THMs was increased gradually.

Composition and Evaluation of the Thermal Desorption-Gas Chromatographic System for the Measurement of Volatile Organic Compounds in Air (공기 중 휘발성 유기화합물의 측정을 위한 열탈착-분석시스템의 구성 및 평가)

  • 이수형;송희남;김희갑
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The thermal desorption-gas chromatographic (TD-GC) system has been constructed for the measurement of volatile organic compounds. The thermal desortion unit is composed of four major parts: 1) the control part; 2) the thermal desorption part; 3) the focusing part; and 4) the injection part. The peltier element was introduced to the focusing part for the temperature of the focusing tube to reach-35$^{\circ}C$. The system was tested for the linearity of the calibration curves and reproducibility of instrumental analyses using some disinfection by-products (DBPs) and BTXs (benzene, toluene and p-xylene). The coefficients of determination (r$^2$) for all the calibration curves made were higher than 0.998, and the coefficients of variation (CV) for triplicate measurements were all within 10%. The system also has been tested for field applicability. The analysis of field samples showed that there was no breakthrough problem in the sampling system and that the system could be applied to field measurements.

Generation characteristics of disinfection by-products (DBPs) by chlorination in sewage effluent (하수처리장 방류수의 염소소독부산물 발생 특성)

  • Seo, Hee-Jeong;Kim, Jong-Min;Min, Kyoung-Woo;Kang, Yeoung-Ju;Paik, Kye-Jin;Park, Jong-Tae;Kim, Seong-Jun
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.272-276
    • /
    • 2009
  • This study was performed to investigate the disinfection efficiency and the generation characteristics of disinfection by-products (DBPs) in the sewage effluent. In the case of total coliforms, disinfection efficiency higher than 99%, the required contact time was 30 min at chlorine dose of 0.5 mg/L, 20 min at 1.0 mg/L, and 10 min at 1.5 mg/L, respectively. When the sewage effluent was disinfected with chlorine dose of 0.5 mg/L for 10 min, the maximum generation concentration of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acid (HAAs) were $32.2{\mu}g/L$, $2.97{\mu}g/L$, and $16.29{\mu}g/L$, respectively. The concentration of chloroform was $28.4{\mu}g/L$ corresponding to 88.1% of the THMs. The concentration of HANs and HAAs were found to be inconsiderable. The average residual chlorine concentration of sewage effluent was 0.4 mg/L, the generation concentration of THMs was maximum $1.72{\mu}g/L$ and average $2.79{\mu}g/L$. HANs and HAAs were under the detection limit by GC/MSD.

Comparative Risk Analysis for Priority Ranking of Environmental Problems (환경 문제의 우선 순위 도출을 위한 비교 위해도 분석에 관한 연구)

  • 김예신;임영욱;남정모;장재연;이동수;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.4
    • /
    • pp.285-298
    • /
    • 2002
  • In Korea, no CRA (comparative risk analysis) studies have been undertaken, nor have their methodologies of such studies been established. Therefore, the objectives of this study were to establish the framework of CRA consisting of health risk, economic risk and perceived risk, and to estimate and compare these risks among the three environmental problems of air pollution, indoor air pollution and drinking water contamination, which are themselves subject to the eight sub -problems of hazardous air pollutants (HAPs), regulated pollutants (representative as PM 10) and dioxins (PCDDs/PCDFs) in air pollution, indoor air pollutants (IAPs) and radon in indoor air pollution, and drinking water pollutants (DWPs), disinfection by -products (DBPs) and radionuclides in drinking water contamination in Seoul, Korea. After which, the priorities of these problems were set by individual and integrated risk. From the results, the rankings of both health risk and economical risk were in the following order: radon, PM10, IAPs, HAPs, DWPs, dioxins, DBPs, and radionuclides among the eight sub problems. On the contrary, the ranking of perceived risk was in the following order: HAPs, dioxins, radionuclides, PM10, DWPs, IAPs, Radon and then DBPs among the eight sub-problems.

Computing the Dosage and Analysing the Effect of Optimal Rechlorination for Adequate Residual Chlorine in Water Distribution System (배.급수관망의 잔류염소 확보를 위한 적정 재염소 주입량 산정 및 효과분석)

  • Kim, Do-Hwan;Lee, Doo-Jin;Kim, Kyoung-Pil;Bae, Chul-Ho;Joo, Hye-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.916-927
    • /
    • 2010
  • In general water treatment process, the disinfection process by chlorine is used to prevent water borne disease and microbial regrowth in water distribution system. Because chlorines were reacted with organic matter, carcinogens such as disinfection by-products (DBPs) were produced in drinking water. Therefore, a suitable injection of chlorine is need to decrease DBPs. Rechlorination in water pipelines or reservoirs are recently increased to secure the residual chlorine in the end of water pipelines. EPANET 2.0 developed by the U.S. Environmental Protection Agency (EPA) is used to compute the optimal chlorine injection in water treatment plant and to predict the dosage of rechlorination into water distribution system. The bulk decay constant ($k_{bulk}$) was drawn by bottle test and the wall decay constant ($k_{wall}$) was derived from using systermatic analysis method for water quality modeling in target region. In order to predict water quality based on hydraulic analysis model, residual chlorine concentration was forecasted in water distribution system. The formation of DBPs such as trihalomethanes (THMs) was verified with chlorine dosage in lab-scale test. The bulk decay constant ($k_{bulk}$) was rapidly decreased with increasing temperature in the early time. In the case of 25 degrees celsius, the bulk decay constant ($k_{bulk}$) decreased over half after 25 hours later. In this study, there were able to calculate about optimal rechlorine dosage and select on profitable sites in the network map.

A Study on Removal of Disinfection By-products in High Concentration Powdered Activated Carbon Membrane Bio-reactor Process for Advanced Water Treatment (고도정수처리를 위한 HCPAC-MBR 공정에서의 소독부산물 저감에 관한 연구)

  • Lee, Song-Hee;Jang, Sung-Woo;Seo, Gyu-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2006
  • This study was conducted to evaluate the performance of a membrane bioreactor filled with high concentration of powdered activated carbon (HCPAC-MBR) to reduce DBPs at the drinking water treatment. The pilot system was installed after the rapid sand filtration process whose plant was the conventional treatment process. The removal efficiencies of DBPs were measured during pilot operation period of 2 years. HAA and THM removal rates could be maintained around 80~90% without any troubles and then tremendous reduction of HAA and THM reactivity were observed more than 52%. The average removal rate of HAA formation potential (FP) and THM formation potential (FP) were 70.5% and 67.6% respectively. It is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment to control DBPs.

Prechlorination at Water Intake for the Quality Improvement of Raw Water (상수원수 수질개선을 위한 취수장 전염소 투입에 관한 연구)

  • Kim, Daehyun;Hwang, Suok;Jeong, Eunjae;Shin, Changsoo;Yu, Youngbeom;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.110-114
    • /
    • 2011
  • In this paper, in order to eliminate Limnoperna fortunei inhabiting the water conduction pipeline, prechlorination at the intake station was employed to improve the degradation of water quality due to the high pH of raw water taken at the downstream of Paldang Dam, algal growth, etc.. With the prechlorination concentration of 1.0mg/L at the intake station, the pH in the water well at the treatment plant decreased by 0.4, and with 1.5mg/L, by 0.6. Also, it eliminated Chlorophyll-a by about 95%, and the population of algae by about 49%. Such disinfection by-products (DBPs) as Trihalomathanes (THMs), Haloacetic Acids (HAAs), and Chloral Hydrate (CH) were under the quality standard for potable water, showing no change by the prechlorination, while raising the prechlorination rate from 1.0 up to 1.5mg/L, the DBPs in the water well increased by 1.5 to 3.1 times. As a consequence of testing Kyungan Stream, a branch stream flowing into Lake Paldang, the prechlorination (0.57mg/L, 1.14mg/L, 1.71mg/L) had no effect of eliminating the taste and odor compounds and total organic carbon (TOC) which is the DBPs precursor. As for the efficiency of Geosmin elimination by the rates of prechlorination and powder activated carbonation (PAC), it was found that the higher the concentration of PAC was (30ppm>20ppm>10ppm), the higher the efficiency was; the higher the rate of prechlorination was, the lower the efficiency by PAC was. Therefore, when taste and odor occur from raw water, suspending prechlorination at the intake or lowering the rate was proved to be more effective in eliminating the taste and odor compounds by PAC.

A Study on Haloacetic Acids Formation Potentials by Chlorination in Drinking Water (상수의 염소처리시 생성되는 소독부산물 중 Haloacetic acid류의 생성능에 관한 연구 - 일부 상수원수를 대상으로 -)

  • Chung, Yong;Shin, Dong-Chun;Lim, Young-Wook;Kim, Jun-Sung;Park, Yeon-Shin
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.23-29
    • /
    • 1997
  • The main reason of applying chlorination is to sterilize microbes existing in the drinking water treatment. But chlorination could lead to the formation of disinfection by-products (DBPs) by the reaction of free chlorine with humic substance in the water. Especially the DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloketones (HKs) exist in the tap water. The US environmental protection agency (US EPA) defines that trihalomethanes, dichloroacetic acid, trichloroacetic acid, and dichloroacetonitrile among DBPs are probable/possible human carcinogens. US EPA suggests maximum contaminant levels (MCLs) for THMs (80$\mu$g/L) and HAAs (60$\mu$g/L) in drinking water. In Korea, THMs in drinking water has been surveyed but DBPs in general has not been studied in drinking water practically. Therefore only THMs have been regulating as criteria compounds since 1990 but neither HAAs nor HANs. Researches on HAAs are yet to be found. HAA formation potentials(HAAFPs) have not been practiced. HAAs depends on the characteristics of water sources by chlorination. In this study, HAAFPs from three distinct sources were investigated by laboratory chlorination experiments. This study was performed to measure the level of HAAs in drinking water in Seoul area. At April 1996, after collecting the raw waters from the three sites with the different properties, the water samples were chlorinated at various conditions(pH 5.5, pH 7.0 and without pH adjustment) in the state of raw water to have 0. 5mg/L of residual chlorine concentration. And the raw water, treated water, and tap water of water treatment were collected to measure the HAAs concentration. The quantitative analysis of HAAs was conducted by US EPA methods.

  • PDF

Ecotoxicological Effects of NaDCC injection method in Ballast Water Management system on Marine Environments (NaDCC 주입 선박평형수 처리기술의 해양생태위해성에 대한 연구)

  • Kim, Tae won;Moon, Chang Ho;Kim, Young Ryun;Son, Min Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.236-236
    • /
    • 2017
  • Effluent treated by an NaDCC injection method in Ballast water management system (BWMS) contains reactive chlorine species and disinfection by-products (DBPs). In this study, we conducted whole effluent toxicity (WET) testing and ecological risk assessment (ERA) to investigate its ecotoxicological effects on marine environment. WET testing was carried out for four marine pelagic and freshwater organisms, i.e., diatom Skeletonema costatum, Navicula pellicuosa, chlorophyta Dunaliella tertiolecta, Pseudokirchneriella subcapitata, rotifer Brachionus plicatilis, Brachionus calyciflorus and fish Cyprinodon variegatus, Pimephales promelas. The biological toxicity test revealed that algae was the only biota that showed apparent toxicity to the effluent; it showed no observed effect concentration (NOEC), lowest observable effect concentration (LOEC) and effect concentration of 50% (EC50) values of 25-50%, 50-100% and >100%, respectively, at three water condition, but did not show any significant toxicities on other biota. Meanwhile, chemical analysis revealed that the BWMS effluent contained total residual oxidants (TROs) below $0.03{\mu}g/L$ and a total of 25 DBPs such as bromate, volatile halogenated organic compounds (VOCs), halogenated acetonitriles (HANs), halogenated acetic acids (HAAs), chloropicrin and Isocyanuric acid. Based on ERA, the 25 DBPs were not considered to have persistency, bioaccumulation and toxicity (PBT) properties. The ratio of predicted environmental concentration (PEC) to predicted no effect concentration (PNEC) of the other DBPs did not exceed 1 for General harbor environment. However, four substances (Isocyanuric acid, Tribromomethane, Chloropicrin and Monochloroacetic acid) were exceed 1 for Nearship environment. But observed toxicity in the test water on algal growth inhibition would be mitigated by normal dilution factor of 5 applied for nearship exposure. Thus, our results of WET testing and ERA showed that the BWMS effluent treated by NaDCC injection method would have no adverse impacts on marine environment.

  • PDF

Characterization of Disinfection By-Products by Chlamydomonas pulsatilla (녹조류(Chlamydomonas pulsatilla)에 의한 염소소독부산물 생성과 그 특성)

  • Kum, Heejung;Kim, Junsung;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.535-540
    • /
    • 2005
  • This study was conducted to evaluate the chlorinated disinfection by-products formation potential (DBPFP) produced from the cell and extracellular product (ECP) of Chlamydomonas pulsatilla after chlorination. Reaction yields of DBPs produced by C. pulsatilla of ECP and the cell were $0.007{\mu}mol/mg{\cdot}C$ and $0.808{\mu}mol/mg{\cdot}C$ respectively, Also, SUVA values of ECP and the cell were measured as $0.313L/mg{\cdot}m$ and $1.052L/mg{\cdot}m$ respectively, The DOC of cell was found to be lower than that of ECP, while the SUVA value and reaction yields for the cell were higher than those of ECP. For ECP, most of the DBPFP was composed of trihalomethanes (THM; 47.3%) and haloacetonitriles (HAN; 38,83%). THM and HAN were the major DBPFP produced by the cell. Chloroform was found to be the major THM compound; 98.3% for ECP and 99.98% for the cell. Dichloroacetic acid (DCAA) and dichloroacetonitrile (DCAN) were identified as the major haloacetic acid (HAA) and HAN compounds formed by ECP and the cell as a precursor, respectively. As the chlorine dose was increased, concentrations of DOC, THMs, and HANs were increased. However, the chlorine dose decreased the concentration of chlorophyll-a.