• 제목/요약/키워드: Dish-type solar receiver system

검색결과 16건 처리시간 0.027초

접시형 태양열 흡수기의 Transient 열전달 특성에 대한 수치해석 연구 (Analysis of Transient Heat Transfer Characteristics of Dish-Type Solar Receiver System)

  • 이주한;서주현;오상준;이진규;서태범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2094-2099
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석 (Computational Heat Transfer Analysis of High Temperature Solar Receiver)

  • 김태준;오상준;이진규;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.49-54
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with $5kW_{th}$ Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along the this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

수치모델을 이용한 고온 태양열 집열기의 열성능 분석 (Characteristic of a Spiral type Receiver for a Dish type solar thermal system using a Numerical model)

  • 김태준;김재익;이진규;이주한;서태범
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.786-791
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric air receiver with $5kW_{th}$ Dish-type solar thermal system for high temperature uses by using numerical analysis compare with experimental data including shape change of absorber, direction of inlet and outlet. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Temperature variation and the flow change at the inside of the absorber has been analyzed by Star-ccm+ Version 3.02. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

CFD를 이용한 접시형 태양열 집열기의 Transient 열전달 성능 해석 (Analysis of Transient Heat Transfer Characteristics of a Receiver for a Dish Type Solar Thermal System by using CFD)

  • 오상준;이주한;서주현;이진규;조현석;서태범
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.167-170
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing the experimental and numerical results, good agreement is obtained. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Effects of Reflectors and Receivers on the Thermal Performance of Dish-Type Solar Power Systems

  • Ma, D.S.;Kim, Y.;Seo, T.B.;Kang, Y.H.;Han, G.Y.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.662-667
    • /
    • 2007
  • The thermal performance comparisons of the dish solar collector system are numerically investigated with mirror arrays and receiver shapes. In order to compare the performances of the dish solar collector systems, six different mirror arrays and four different receiver shapes are considered and the radiative heat flux distribution on the inside of the receiver is analyzed. A parabolic-shaped perfect mirror of which diameter is 1.5 m is considered as a reference of the mirror arrays. Five different mirror arrays of twelve identical parabolic -shaped mirror facets of which diameter are 0.4 m are proposed in this study. Their reflecting areas, which are 1.5 $m^2$, are the same. Four different receiver shapes are a dome, a conical, a cylindrical and a unicorn type. The solar irradiation reflected by mirrors is traced using the Monte-Carlo method. In addition, the radiative properties of the mirror surface can vary the thermal performance of the dish solar collector system so that the effects of the surface reflectivity and the surface absorptivity are considered. Based on the calculation, the design information of dish solar collector system for producing the electric power can be obtained. The results show that the dome type has the best performance in receiver shapes and the 2AND4INLINE has the best performance in mirror arrays except the perfect mirror.

  • PDF

다공성 매질의 형상 변화에 따른 접시형 고온 태양열 흡수기의 열성능 평가 (Heat Transfer Analysis of High Temperature Dish-type Solar Receiver with the Variation of Porous Material)

  • 이주한;서주현;오상준;이진규;조현석;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.238-244
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the heat transfer characteristics of 5kWth dish-type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical simulation. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Using the numerical model, the heat transfer characteristics of volumetric air receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석 (Computational Heat Transfer Analysis of High Temperature Solar Receiver)

  • 김태준;이주한;한귀영;강용혁;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권4호
    • /
    • pp.22-27
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with 5k Wth Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along with this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

CFD를 이용한 접시형 태양열 집열기의 과도 열전달 모델 해석 (Computational Heat Transfer Analysis of Dish Type Solar Receiver Using the Transient model)

  • 오상준;이주한;서주현;이진규;조현석;서태범
    • 신재생에너지
    • /
    • 제4권4호
    • /
    • pp.72-79
    • /
    • 2008
  • A numerical and experimental studies are carried out to investigate the transient heat transfer characteristics of 5kWth dish type solar air receiver. Measured solar radiation and temperatures at several different locations are used as boundary conditions for numerical a. Many parameters' effects (reflectivity of the reflector, the thermal conductivity of the receiver body, transmissivity of the quartz window, etc.) on the thermal performance are investigated. Discrete Transfer Method is used to calculate the radiation heat exchange in the receiver. A transient heat transfer model is developed and the rate of radiation, convection and conduction heat transfer are calculated. Comparing of the experimental and the numerical results, results of both are in good agreement. Using the numerical model, the transient heat transfer characteristics of volumetric air receiver for dish type solar thermal systems are known and the transient thermal performance of the receiver can be estimated.

  • PDF

Dish/Stirling 시스템 적용을 위한 Hybrid 태양열 흡수기의 열특성에 관한 실험 연구 (An Experimental Study on the Thermal Characteristics of Hybrid Solar Receiver for Dish/Stirling System)

  • 강명철;김진수;강용혁;김낙주;유성연;김진혁
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.7-13
    • /
    • 2007
  • A Dish type solar concentrating system consists of a parabolic concentrator and a cavity receiver. In order to achieve high temperatures from solar energy, it is essential to efficiently reflect the solar rays in the concentrator and to minimize thermal losses in the cavity receiver. Improving the economical efficiency of a solar power system required the stirling unit to be operated continuously. For continuous operation of the stilting unit, the receiver must be continuously provided with thermal energy from solar as well as additional combustion heat. It is possible for a hybrid solar receiver system equipped with an additional combustion to be operated 24 hrs/day. A hybrid solar receiver was designed and manufactured for a total thermal load of 35 kW in the operating temperature range $700^{\circ}C$ to $800^{\circ}C$. The hybrid receiver system was tested in gas-only mode by gas-fired heat to investigate thermal characteristics at inclination angle varying from 0 deg to 30 deg(cavity facing down) and the aperture to cavity diameter ratios of 0(closed cavity) and 1.0(open cavity). This paper has been conducted to measure temperature distribution in cavity surface and to analyze thermal resistances, and the evaporation and condensation heat transfer coefficient in all cases(open and closed cavity).

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.