• 제목/요약/키워드: Dish concentrator

검색결과 35건 처리시간 0.022초

태양추적식 자연채광 장치의 집광기 종류에 따른 성능 분석: 포물 반사경 vs. 프레넬 렌즈 (Performance Analysis on Solar Tracking Daylighting Systems Using Different Types of Solar Collectors: Parabolic Dish vs. Fresnel Lens)

  • 김영민;김원식;정해준;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제37권1호
    • /
    • pp.39-45
    • /
    • 2017
  • This paper presents the effect of solar collectors on the performance of solar tracking daylighting systems. A series of measurements were made for two different types of solar collectors mounted on double axis solar trackers: Parabolic dish concentrator and Fresnel Lens. Indoor light levels were measured at different locations of an office space (longitude: 126.33 E, latitude 33.45 N) as photo sensors were placed on a task plane 80 cm above the floor. To accurately monitor the applicability of the systems, measurements were performed under clear and overcast sky conditions with the roll-screen (on the south window) in the down position. Comparing the illuminance data, the system with Fresnel lens outperformed that of parabolic dish concentrator. On clear days, the former delivered the light levels of 400~600 lux on the task plane whereas the latter recorded 100~200 lux. Depending on the amount of cloud cover, on overcast days, illuminance readings fluctuated to some extent.

광튜브와 디쉬형 집광기의 자연채광 성능 예측 및 비교 연구 (A Comparative Study on Daylighting Performance Prediction of Light Tube and Dish Concentrator)

  • 오승진;한현주;천원기
    • 에너지공학
    • /
    • 제21권2호
    • /
    • pp.124-132
    • /
    • 2012
  • 본 연구에서는 북측창을 가진 강의실 내의 불균형적인 실내 조도차이를 개선하기 위해 두 가지의 자연채광시스템을 적용하였을 경우에 대하여 Photopia를 이용한 성능 시뮬레이션을 수행하였다. 특히, 본 연구에서는 태양고도가 최고 $80^{\circ}$ 이르는 하지에 청천공 상태 하에서의 태양고도에 따른 각 시스템의 배광분포곡선을 구하고 이를 이용하여 실내 조도 등을 분석하였다. 작업면의 경우, 창측과 복도측의 평균 조도차가 1000lx를 초과하였는데 시스템 설치 후에는 그 차이가 상당히 줄어드는 것으로 나타났다. 광튜브 시스템 설치시 906lx에서 603lx로 감소하였으며, 디쉬형 시스템은 308lx까지 줄어들었다. 광튜브의 성능은 태양고도에 영향을 크게 받았으며 디쉬형 집광기는 지속적인 태양추적으로 인하여 태양고도에 관계없이 일정한 성능을 보여주었다.

태양열 집광기의 플럭스 밀도 분포 특성에 관한 연구 (An Experimental Study on the Characteristics of Flux Density Distributions produced by Solar Concentrating System)

  • 강명철;강용혁;윤환기;유창균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.422-426
    • /
    • 2005
  • This experimental study represents the results of an analysis on the characteristics of flux density distribution in the focal region of solar concentrator. The characteristics of flux density distributions are investigated to optimally design and position a cavity receiver. This was deemed very useful to find and correct various errors associated with a dish concentrator. We estimated the flux density distribution on the target placed along with focal lengths from the dish vertex to experimentally determine the focal length. It is observed that the actual focal point exists when the focal length is 2.17m. The total integrated power and percent power was 2467W and $85.8\%$, respectively, in the case of small dish, and also 2095W and $79\%$, respectively, in the case of KIERDISH II. As a result of the percent power within radius, approximately $90\%$ of the incident radiation is intercepted by about 0.06 m radius. The minimum radius of receiver in KIERDISH II is found to be 0.15m and approximately $90\%$ of the incident radiation is intercepted by receiver aperture.

  • PDF

태양열 집광기의 초점 지역에 형성된 플럭스 밀도 분포의 특성 (An Experimental Study on the Characteristics of Flux Density Distributions in the Focal Region of a Solar Concentrator)

  • 현성택;강용혁;윤환기;유창균;강명철
    • 한국태양에너지학회 논문집
    • /
    • 제22권3호
    • /
    • pp.31-37
    • /
    • 2002
  • This experimental study represents the results of an analysis on the characteristics of flux density distributions in the focal region of solar concentrator. The characteristics of flux density distributions are investigated to optimally design and position a cavity receiver. This deemed very useful to find and correct various errors associated with a dish concentrator. We estimated the flux density distribution on the target placed along with focal lengths from the dish vertex to experimentally determine the focal length. It is observed that the actual focal point exists when the focal length is 2.17 m. We also evaluated the position of flux centroid, and it was found that there were errors within 2 cm from the target center. The total integrated power of 2467 W was measured under focal flux distributions, which corresponds to the intercept rate of 85.8%. As a result of the percent power within radius, approximately 90% of the incident radiation is intercepted by about 0.06 m radius.

실내조명용 화이버 광학 집광기의 성능에 관한 실험적 평가 (Experimental Evaluation of a Fiber Optic Concentrator for Daylighting)

  • 한현주;김정태
    • 한국태양에너지학회 논문집
    • /
    • 제28권3호
    • /
    • pp.27-34
    • /
    • 2008
  • A series of outdoor tests were conducted on a fiber optic solar concentrator system for its performance on daylighting. The system is comprised of four main components - a parabolic dish reflector, a convex mirror, a homogenizer tube and an optical fiber cable. Results show that the system could be successfully applied for indoor lighting if some improvements are made for light transmiting (optical) cables. A maximum concentration ratio of 90 was observed delivering the illuminance of 4,800 lux at a distance of 1.2m from the diffuser for the outdoor illuminance of 102,100 lux.

설치장소에 의한 스털링엔진 태양열 발전시스템의 성능예측 (Performance Prediction of a Solar Power System with Stirling Engine in Different Test Sites)

  • ;배명환;장형성;강상율
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.122-128
    • /
    • 2001
  • The simulation analyses of a dish solar power system with stirling engine in this study are applied to system performance prediction if four different test sites; Seoul, Pusan and Cheju in Korea, and Naha in Japan. The effects of difference of concentrator type such as monolithic and stretched-membrane construction on system efficiency are also evaluated. The total amount of generated power for a year depends on the site. However the total maximum system efficiency in every site is approximately 16% and there isnt striking difference. It is also found that the maximum collector efficiency of stretched-membrane concentrator is about 3∼15% lower than that of the monolithic type.

  • PDF

반사경 배치와 흡수기 형상에 따른 접시형 고온 태양열 시스템 성능비교 (Performance Comparison of Dish Solar Collector With Mirror Arrays & Receiver Shapes)

  • 마대성;김용;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제27권1호
    • /
    • pp.29-38
    • /
    • 2007
  • In order to analyze the performance comparison of dish solar collector with mirror arrays and receiver shapes, the radiative heat flux distribution inside the cavity receiver is numerically investigated. The solar irradiation reflected by dish solar collector is traced using the Monte-Carlo method. Five different dish solar collectors and three different cavity receivers are considered. A parabolic-shaped perfect mirror of which diameter is 1.5 m is considered as a reference dish solar collector and four different arrays of twelve identical parabolic-shaped mirror facets of which diameter are 0.4 m are used. Their reflecting areas, which are $1.5\;m^2$, are the same. Three different cavity receiver shapes are dome, conical, and cylindrical. In addition, the radiative properties of the concentrating surfaces can vary the thermal performance of the cavity receiver so that variation of the surface reflectivity of each mirror is considered. Based on the calculation, the design information of dish solar collector for producing the electric power can be obtained. The results show that the dome type has the best performance in receiver shapes and the 2AND4 INLINE has the best performance in mirror arrays except perfect mirror.

Dish/Stirling 시스템 적용을 위한 Hybrid 태양열 흡수기의 열특성에 관한 실험 연구 (An Experimental Study on the Thermal Characteristics of Hybrid Solar Receiver for Dish/Stirling System)

  • 강명철;김진수;강용혁;김낙주;유성연;김진혁
    • 한국태양에너지학회 논문집
    • /
    • 제27권3호
    • /
    • pp.7-13
    • /
    • 2007
  • A Dish type solar concentrating system consists of a parabolic concentrator and a cavity receiver. In order to achieve high temperatures from solar energy, it is essential to efficiently reflect the solar rays in the concentrator and to minimize thermal losses in the cavity receiver. Improving the economical efficiency of a solar power system required the stirling unit to be operated continuously. For continuous operation of the stilting unit, the receiver must be continuously provided with thermal energy from solar as well as additional combustion heat. It is possible for a hybrid solar receiver system equipped with an additional combustion to be operated 24 hrs/day. A hybrid solar receiver was designed and manufactured for a total thermal load of 35 kW in the operating temperature range $700^{\circ}C$ to $800^{\circ}C$. The hybrid receiver system was tested in gas-only mode by gas-fired heat to investigate thermal characteristics at inclination angle varying from 0 deg to 30 deg(cavity facing down) and the aperture to cavity diameter ratios of 0(closed cavity) and 1.0(open cavity). This paper has been conducted to measure temperature distribution in cavity surface and to analyze thermal resistances, and the evaporation and condensation heat transfer coefficient in all cases(open and closed cavity).

접시형 태양열 집광 시스템의 에너지 분포 특성에 관한 연구 (A Study on Energy Distributions Produced by Dish Solar Concentrating System)

  • 현성택;강용혁;천원기
    • 설비공학논문집
    • /
    • 제14권11호
    • /
    • pp.907-913
    • /
    • 2002
  • An experimental study on energy density distributions produced by dish solar concentrating system was performed to optimally design and rightly position a cavity receiver. This deemed also very useful to find and correct various errors associated with a concentrator. It is observed that the actual focal length is 2.17 m with a maximum energy density of 1.89 MW/$m^2$. By evaluating the position of flux centroid, it was found that there are errors within 2 cm from the target center. As a result of the percent power within radius, approximately 90% of the incident radiation is intercepted by about 0.06 m radius. The area concentration ratio normalized to 800 W/$m^2$ insolation and 90% mirror reflectivity was 347 suns. The total integrated power of 2467 W was measured under focal flux distributions, which corresponds to the intercept rate of 85.8%.

고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션 (Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor)

  • 고요한;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.