• Title/Summary/Keyword: Disease research

Search Result 12,353, Processing Time 0.054 seconds

Metabolite Profiling of Serum from Patients with Tuberculosis

  • Park, Hee-Bin;Yoo, Min-Gyu;Choi, Sangho;Kim, Seong-Han;Chu, Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.264-268
    • /
    • 2021
  • Tuberculosis (TB) is a major infectious disease that threatens the life and health of people globally. Here, we performed a metabolomic analysis of serum samples from patients with intractable TB to identify biomarkers that might shorten the TB treatment period. Serum samples collected at the commencement of patients' treatment and healthy controls were analyzed using the capillary electrophoresis and time-of-flight mass spectrometry metabolome analysis method. The analysis identified the metabolites cystine, kynurenine, glyceric acid, and cystathionine, which might be useful markers for monitoring the TB treatment course. Furthermore, our research may provide experimental data to develop potential biomarkers in the TB treatment course.

Tissue Microarrays in Biomedical Research

  • Chung, Joon-Yong;Kim, Nari;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Lee, Sang-Kyoung;Warda, Mohamad;Han, Jin
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Recent studies in molecular biology and proteomics have identified a significant number of novel diagnostic, prognostic, and therapeutic disease markers. However, validation of these markers in clinical specimens with traditional histopathological techniques involves low throughput and is time consuming and labor intensive. Tissue microarrays (TMAs) offer a means of combining tens to hundreds of specimens of tissue onto a single slide for simultaneous analysis. This capability is particularly pertinent in the field of cancer for target verification of data obtained from cDNA micro arrays and protein expression profiling of tissues, as well as in epidemiology-based investigations using histochemical/immunohistochemical staining or in situ hybridization. In combination with automated image analysis, TMA technology can be used in the global cellular network analysis of tissues. In particular, this potential has generated much excitement in cardiovascular disease research. The following review discusses recent advances in the construction and application of TMAs and the opportunity for developing novel, highly sensitive diagnostic tools for the early detection of cardiovascular disease.

  • PDF