• Title/Summary/Keyword: Disease incidence on leaves

Search Result 117, Processing Time 0.026 seconds

Etiology and Chemical Control of Skin Sooty Dapple Disease of Asian Pear (동양배 과피얼룩병의 발생생태와 화학적 방제)

  • Park, Young-Seob;Kim, Ki-Chung;Lee, Jang-Hoon;Kim, In-Seon;Choi, Yong-Soo;Cho, Song-Mi;Kim, Young-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.375-381
    • /
    • 2008
  • A new disease causing skin sooty dapple symptoms on fruits, leaves, and young shoot of Asian pear occurred in Korea. However, no chemical control approaches has been developed to control this disease. To investigate ecological aspects of this disease, we conducted field surveys in the high or low disease occurred orchards. The years with heavy rainfall caused severe occurrence of the skin sooty dapple disease than the years with lower rainfall during all growth stages of pear fruit. Different fruit-wrapping bags did not prevent occurrence of skin sooty dapple disease, and lesion numbers were higher in lower parts of fruit equatorial line inside of fruit-wrapping bags. There is a direct correlation between occurrence of the skin sooty dapple disease and frequency of fungicide application in the orchards. Among the tested commercial fungicides, thiophanate-methyl WP and penconazole WP completely inhibited the growth of the Cladosporium sp. in in vitro studies but little protection was observed in the field following fungicide applications. However, application of lime sulfur combined with the use of fruit-wrapping bags most effectively reduced incidence of the disease in the field. Our results suggest that skin sooty dapple disease could be a serious problem in sustainable organic pear farms and effective control methods for this disease urgently required.

Biological control of Lettuce Sclerotinia rot using Bacillus mojanvinensis Pro-EB 15 strain.

  • Bak, Joung-Woo;Kim, Hyun-Ju;Park, Jong-Young;Lee, Kwang-Youll;Gang, Jun-Ho;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.102.2-103
    • /
    • 2003
  • This studies were investigated the occurrence of Sclerotinia rot by Sclerotinia Sclerotiorum at the lettuce field in Uiryeong-Gun, Gyeongsangnam-Do and were isolated the most effective microorganism for the biological control to the pathogen, S. sclerotiorum YR-1 strain from diseased soil and lettuce leaves. For the pathogenicity test, the most suitable inoculmn density of YR-1 strain was selected as the mycelial suspension of 40m1 showing disease incidence of 80%, and the symptom showed as same as at the fields, the leaves and stem had rotten and developed white downy mycelial at the diseased lesion on the leaves and stems, and produced black and irregular sclerotinia. On the PDA dual test, about 300 isolates were examined the antifungal activity to the pathogen, YR-1 strain, and among them, A-2, A-7, and RH-4 strain were selected most effective antagonistic bacteria. At pots test, the control value of A-7 strain showed the highest value as 85% which was more effective than that of others in a growth chamber. For the promotion of control effect, the selected 3 isolates were spayed on the lettuce leaves as a sole and/or mixed treatments in a growth chamber, the mixed treatment of A-7 and RH-4 strain showing the control value of 90% was most effective than that of sole treatment with A-7 or RH-4 strain showing the control value of 80%, respectively and mixed treatment with A-2 and A-7 strain and A-2, A-7 and RH-4 strain. In addition, 3 bacteria re-isolated from diseased soils, and all of the selected 6 isolates investigated the control effect at pots in a growth chamber, According to the results, A-7 and Pro-EB 15 strain showed the control value of 91.0% and 90.1% respectively, and they were selected most effectual antagonistic bacteria to control lettuce sclerotinia rot and identified as the Bacillus mojanuinensis by 16s RNA analysis. This is the first report on the biological control using by B. mojanvinensis to the lettuce Sclerotinia rot.

  • PDF

Environmental Control Accomodative to Ecosystem on the Prevention of Nuclear Polyhedrosis Virus Disease in the Silkworm. Bombyx mori (생태친화적(生態親和的) 사육환경(飼育環境) 제어방식(制御方式) 확립(確立)을 위한 누에 핵다각체병(核多角體病) 발생요인(發生要因) 분석(分析))

  • Han, Myung-Sae;Lim, Jong-Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.15
    • /
    • pp.69-81
    • /
    • 1997
  • For the prevention of worldwide prevalent disease of nuclear polyhedrosis virus (NPV), environmental conditions and their incidence of grasserie was investigated through 57 cases of silkworm rearing from the year of 1979 to 1993 in the countries of Korea, Japan, and Philippines. Relationship between the occurrence of NPV and environmental factors were also analysed from the aspect of causal pathogenesis. Unfavorable foactors related to the prevalence of NPV disease was reconfirmed by the assay of experimental rearing. Silkworms reared on mulberry leaves or artificial diet appeared similar result on the occurrence of grasserie. Disinfection by formalin and simple sweeping or washing was not significantly different on the occurrence of NPV disease. Following insufficient ventilation on the younger larvae. from the 1st to 3rd instar, the disease by NPV at the later stage was remarkably emphasized those insidence. An experimental rearing from 1993 to 1996 demonstrated the prevention of NPV disease by simple cleaning of sweeping under the condition of air forced ventilation, the customal practice of disinfection with formalin or any other chemical agents could be omissible.

  • PDF

Disinfection of Fusarium-infected Rice Seeds by Prochloraz and Gaseous Chlorine Dioxide

  • Jeon, Young-ah;Lee, Young-yi;Lee, Ho-sun;Sung, Jung-sook;Lee, Seokyoung
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.25-25
    • /
    • 2014
  • Three species of Fusarium, F. fujikuroi, F. verticillioides and F. proliferatum, are known to be associated with bakanae disease of rice [1, 2]. F. fujikuroi infects rice flowers and survive in endosperm and embryo of the seeds. Infected seed is an important source of primary inoculum of pathogens [3]. Seeds of rice (Oryza sativa cv. Boramchan) collected from bakanae-infected field were found to be 96% infected with Fusarium sp., 52% with F. fujikuroi, 42% with F. verticillioides, and 12% with F. proliferatum as determined by incubation method and species-specific PCR assays. F. fujikuroi was detected at lemma/palea, endosperm and embryo whereas F. verticillioides and F. proliferatum were recovered only from lemma/palea by means of component plating test. Seed disinfection methods have been developed to control bakanae disease and prochloraz has been most widely used for rice seeds. Two chemicals formulated with prochloraz (PC 1) and prochloraz + hexaconazole (PC 2) that inhibit biosynthesis of ergosterol strongly reduced the incidence of Fusarium spp. on selective media to 4.7% and 2.0%, respectively. Disease symptoms of rice seedlings in nursery soil were alleviated by chemical treatment; seedlings with elongated leaves or wide angle between leaf and stem were strikingly reduced from 15.6 to 3.2% (PC 1) and 0 (PC 2), stem rots were reduced from 56.9 to 26.2% (PC 1) and 32.1% (PC 2), and normal seedling increased from 0.4 to 13.3% (PC 2). Prochloraz has some disadvantages and risks such as the occurrence of tolerant pathogens [4] and effects on the sterol synthesis in animals and humans [5]. For these reasons, it is necessary to develop new disinfection method that do not induce fungal tolerance and are safe to humans and animals. Chlorine dioxide ($ClO_2$), that is less toxic, produces no harmful byproducts, and has high oxidizing power, has been reported to be effective at disinfection of several phytopathogenic fungi including Colletotrichum spp. and Alternaria spp. [6]. Gaseous $ClO_2$ applied to rice seeds at a concentration of 20 ppm strongly suppressed mycelial growth of Fusarium fujikuroi, F. verticillioides and F. proliferatum. The incidence of Fusarium spp. in dry seed with 8.7% seed moisture content (SMC) tended to decrease as the concentration of $ClO_2$ increased from 20 to 40 ppm. Applying 40 ppm $ClO_2$ at 90% relative humidity, incidence was reduced to 5.3% and resulted in significant reduction of disease symptoms on MS media. In nursery soil, stem rot was reduced from 56.9 to 15.4% and the number of normal seedlings increased from 0.4 to 25.5%. With water-soaked seeds (33.1% SMC) holding moisture in the endosperm and embryo, the effectiveness of disinfection using $ClO_2$ increased, even when treated with only 20 ppm for four hours. This suggests that moisture was a key element for action of $ClO_2$. Removal of the palea and lemma from seeds significantly decreased the incidence of Fusarium spp. to 3.0%. Seed germination appeared to decrease slightly by water-soaking at $30^{\circ}C$ because of increased SMC and by physical damage of embryos from hulling. These results indicate that the use of gaseous $ClO_2$ was effective as a means to disinfect rice seeds infected with Fusarium spp. and that moisture around the pathogens in the seed was an important factor for the action of $ClO_2$. Further investigations should be conducted to ascertain the best conditions for complete disinfection of Fusarium spp. that infect deep site of rice seeds.

  • PDF

Effects of Application Levels of Fertilizer on the Susceptibility to Bacterial Leaf Blight, Yield and Quality of Grains in Nineteen Rice Cultivars in Jeonnam Region (전남지방에 있어서 시비수준이 벼 품종별 백엽고병 감수성과 수량 및 미질에 미치는 영향)

  • Cha K.H.;Kim Y.S.;Kim H.J.;Lee D.K;Kim M.S.
    • Korean journal of applied entomology
    • /
    • v.21 no.4 s.53
    • /
    • pp.216-221
    • /
    • 1982
  • This experiment was conducted in Jeonnam to investigate the effects of fertilizer amounts at two application levels on disease severity of bacterial leaf blight, yield and qualify of rice grains using nineteen rice cultivars. Incidence of bacterial leaf blight was more severe in the field with higher amount of fertilizer application. Disease severity was also different depending upon maturity of rice cultivars of early maturing group, however, the flag, second and third leaves were diseased in rice cultivars of medium late maturing group. Such differences were more obvious in the field with higher amount of fertilizer application than in the field with ordinary fertilizer application. Rice cultivars such as Taebaegbyeo, Hangangchalbyeo, Baegunchalbyeo, Palgwangbyeo and Milyang 42 were resistant whereas rice cultivars such as Milyang 30, Geumgangbyeo, Nagdongbyeo and Jinjubyeo were susceptible to bacterial leaf blight in both treatments. However, fertilization rate and percentage of ripeness were decreased resulting in heavy loss of yield. The rate of green-kerneled rice was increased resulting in poor qualify.

  • PDF

Biological Control of Perilla Sclerotinia Rot Caused by Sclerotinia sclerotiorum Using Bacillus megaterium N4. (Bacillus megaterium N4에 의한 들깨 균핵병 (Sclerotinia sclerotiorum)의 생물학적 방제)

  • 문병주;김현주;송주희;이광열;백정우;정순재
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.761-769
    • /
    • 2004
  • This study was investigated the occurrence of sclerotinia rot caused by Sclerotinia sclerotiorum at the major perilla cultivating area, Gangdong-dong, Gangseo-gu, Busan in 1998. The incidence of this disease ranged from 8.1 to 28.3% at Gangdong-dong area during the growing seasons. Symptoms of the disease initially appeared damping-off of infected stems and soft-rot on the leaves of perilla. Under the relatively high humidity, abundant white mycelia of the pathogen formed on the lesion developed into black sclerotia later and the infected leaves were finally fell down. Sixteen isolates, Sl-S16, isolated from diseased lesions showing typical symptoms, and pathogenicity was tested using mycerlial disks. Among them, S2 isolate showing the most strong pathogenicity was selected and identified as Sclerotinia sclerotiorum on the basis of morphological and cultural characteristics. For biological control, an antagonistic bacteria, N4 isolate which effectively inhibited not only mycelial growth of S2 isolate but also suppress sclerotinia rot on the pot assay, was selected and identified as Bacillus megaterium according to Bergey's manual and API system., Wettable powder type, N4 formulation using B. megaterium N4 isolate was developed and estimated its control effect on perilla crops in a plastic house. As a results, N4 formulation which applied before 3 days inoculation of pathogen was effectually controlled Sclerotinia rot as the control value of 98.0%, was more effective than chemical fungicide, benomyl showing the control value of 78.0%. This is the first report of wettable powder formulation as a biocontrol agent using B. megaterium N4 against Sclerotinia rot caused by S. sclerotiorum on perilla.

Reduced Sensitivities of the Pear Scab Fungus (Venturia nashicola) Collected in Ulsan and Naju to Five Ergosterol-biosynthesis-inhibiting Fungicides (울산과 나주에서 채집한 배나무 검은별무늬병균의 ergosterol 생합성 저해제 5종에 대한 감수성 저하)

  • Kwon, Soo-Mean;Yeo, Moo-Ill;Choi, Se-Hoon;Kim, Gun-Woong;Jun, Kyung-Jin;Uhm, Jae-Youl
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.48-58
    • /
    • 2010
  • In Korea, EBI fungicides which are highly effective for control of pear scab and rust but of high risk for development of resistance have been frequently sprayed by majority of pear growers. To detect any possible resistance or reduced sensitivity in the field strains of scab fungus to five EBIs, difenoconazole, fluquinconazole, flusilazole, fenarimole and hexaconazole, sensitivity tests were conducted with fungal specimens collected in Ulsan and Naju where scab usually occurs and EBIs have been intensively sprayed for many years. As the strains for which $EC_{50}$ values of the EBIs were largely shifted from those of base-line were occasionally found, the resistant or less sensitive strains were supposed to be distributed. In the activity test for the EBIs by artificial inoculation, in which EBI-treated pear leaves on the potted seedlings were inoculated with fungal spores collected in the two regions, development of resistances to EBIs were confirmed. Since the fungal spores collected at 4 and 2 orchards in Naju and Ulsan, respectively, produced much higher disease incidence on the leaves treated with hexaconazole than those on the untreated control, those fungal specimens were determined as resistant to hexaconazole. Similar results were also obtained with two specimens from Ulsan for flusilazole.

Effect of LED Irradiation on Growth Characteristids of Ginseng Cultivated in Plastic Film House

  • Seo, Sang Young;Cho, Jong hyeon;Kim, Chang Su;Kim, Hyo Jin;Kim, Dong Won;An, Min Sil;Yoon, Du Hyeon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.45-45
    • /
    • 2019
  • This experiment was carried out using artificial clay and LED in the plastic film house (irradiation time: 08:00~18:00/day). Seedlings (n = 63 per $3.3m^2$) of ginseng was planted on May 17, 2018. LED was combined with red and blue light in a 3:1 ratio and irradiated with different light intensity. The average air temperature from April to September was $12.3^{\circ}C$ $-26.0^{\circ}C$ and it was the the highest at $26.0^{\circ}C$ in August. The test area where fluorescent lamp was irradiated tended to be somewhat higher than the LED irradiation area. The chemical properties of the test soil are as follows. pH levels was 5.3~5.5, EC levels 0.45~0.52 dS/m and OM levels 33~37%. The total nitrogen content was 0.35~0.47% and the available $P_2O_5$ contents was 13.7~16.0 mg/kg, which was lower than the suitable level of 70~200 mg/kg. Exchangeable cations K and Mg contents were within acceptable ranges, but the Ca contents was $28{\sim}38cmol^+/kg$ levels higher than the permissible level ($2{\sim}6cmol^+/kg$). Germination of ginseng leaves took 8~9 days and the overall germination rate was 70~75%. The photometric characteristics of LED light intensity are as follows. The greater the light intensity, the higher the PAR (Photosynthetic Action Radiation) value, illuminance and solar irradiation. Photosynthetic rate was also increased with higher light intensity was investigated at $1.7{\sim}3.2{\mu}mol\;CO_2/m^2/s$. Leaf temperature ($23.7{\sim}24.8^{\circ}C$) by light intensity was the same trend. The growth of aerial parts (plant height etc.) were generally excellent when irradiated with 3 times the light intensity, the growth of the ginseng aerial parts were excellent as follows. The plant height was 42.6 cm, stem length was 25.2 cm, leaf length was 9.6 cm and stem diameter was 5.0 mm. The growth of underground part (root length etc.) was the same, and the root length was 24.4 cm, the tap root length was 6.0 cm, diameter of taproot was 18.2 mm and the fresh root weight was 17.2 g. There were no disease incidence such as Alternaria blight, Gray mold and Anthracnose. Disease of Damping off occurred 2.2~3.6% and incidence ratio of rusty root ginseng was 14.6~20.7%. Leaf discoloration rate was 13.7~48.9% and increased with increasing light intensity. Ginsenoside content of ginseng by light intensity is under analysis.

  • PDF

Development of Control System with Fungicides against Diseases of Ginseng Plant (살균제 처리에 따른 인삼의 지상부 병해 방제효과)

  • Kim, Joo-Hyung;Lee, Seon-Wook;Min, Ji-Young;Bae, Young-Seok;Shin, Myeong-Uk;Kim, Sun-Bo;Kim, Myoung-Ki;Yeon, Cho-Rong;Lim, Jin-Young;Kim, Heung-Tae
    • Research in Plant Disease
    • /
    • v.13 no.3
    • /
    • pp.164-169
    • /
    • 2007
  • Three kinds of disease occurring on ginseng leaves, such as grey mold, Alternaria blight, and anthracnose, started at the beginning of June, July, and August, respectively. The disease incidence was rapidly increased from the beginning of rainy season. To develop the control system with fungicides, 6 fungicides were selected and applied on ginseng at the indicated time. Calculating the control value by using the area under the disease progressing curve (AUDPC), the control activities of the supervised control system with fungicides were 61.7, 78.8 and 70.5% against grey mold, Alternaria blight, and anthracnose, respectively. The application of the mixture of carbendazim and diethofencarb on first of June was very important in control system with fungicides. If it was deleted in control system, control value was decreased against grey mold. In the case of Alternaria blight and anthracnose, the application of difenoconazole on July 18, and trifloxystrobin on August 7 were indispensible. If difenoconazole and trifloxystrobin were not applied on July 18, and August 7, the control activities against Alternaria blight and anthracnose, respectively, were decreased to 28.9% and 44.4%.

Occurrence of Fusarium wilt on Cyclamen Casued by Fusarium oxysporum f. sp. cyclaminis and Selection of Resistant Cultivars (Fusarium oxysporum f. sp. cyclaminis에 의한 시클라멘 시들음병 발생 및 저항성 품종 선발)

  • Kim, Jin-Young;Kim, Hong-Gi;Hong, Sun-Sung;Kim, Jin-Won;Park, Kyeong-Yeol
    • Research in Plant Disease
    • /
    • v.9 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • A wilt disease of commercial cyclamen (Cyclamen persicum) which grown in greenhouse was found in Gyeo-nggi province of Korea during the period from August, 2001 to July, 2002. The disease incidence was up to 42.7% in Kimpo, Gyeonggi province. The disease was more severe in ebb and flow irrigation system than con-ventional overhead flooding\'s. The wilted cyclamen plants showed the chlorosis of leaves and followed by the death. The vascular tissues of the infected basal stem and bulb were discolored with black streaks. The casual fungus was identified to be Fusarium oxysporum f. sp. cyclaminis on the basis of mycological characteristics. Effect of infected soil showed 100% infection rate when the cyclamen plants were grown in potting with infested soil. Examine resistant cultivar showed ‘Matis red’, ‘Schubert’, ‘Victoria’ and ‘Chopin’ were the resistant cultivars but most of cultivars were susceptible to Fusarium wilt. The control effect of chemicals for cyclamen wilt was not much efficient to curative effects even though. Benomyl WP and Fludioxonil SC on the Fusarium wilt had only preventive effects by soil drenching in the pot before inoculation of F. oxysporum. This is the first report on the fusarium wilt of cyclamen caused by F. oxysporum f. sp. cyclaminis in Korea.