Purpose: The purpose of this study was to evaluate the accuracy of four prediction models in adult burn patients. Methods: This retrospective study was conducted on 696 adult burn patients who were treated at burn intensive care unit (BICU) of Hallym University Hangang Sacred Heart Hospital from January 2017 to December 2019. The models are ABSI, APACHE IV, rBaux and Hangang score. Results: The discrimination of each prediction model was analyzed as AUC of ROC curve. AUC value was the highest with Hangang score of 0.931 (0.908~0.954), followed by rBaux 0.896 (0.867~0.924), ABSI 0.883 (0.853~0.913) and APACHE IV 0.851 (0.818~0.884). Conclusion: The results of evaluating the accuracy of the four models, Hangang score showed the highest prediction. But it is necessary to apply the appropriate prediction model according to characteristics of the burn center.
The statistical regression model is one of the most frequently used clinical analysis methods. It has basic assumption of linearity, additivity and normal distribution of data. However, most of biological data in medical field are nonlinear and unevenly distributed. To overcome the discrepancy between the basic assumption of statistical model and actual biological data, we propose a new analytical method based on artificial neural network. The newly developed multilayer perceptron(MLP) is trained with 120 data set (60 normal, 60 patient). On applying test data, it shows the discrimination power of 0.76. The diabetic risk factors were also identified from the MLP neural network model and the logistic regression model. The signigicant risk factors identified by MLP model were post prandial glucose level(PP2), sex(male), fasting blood sugar(FBS) level, age, SBP, AC and WHR. Those from the regression model are sex(male), PP2, age and FBS. The combined risk factors can be identified using the MLP model. Those are total cholesterol and body weight, which is consistent with the result of other clinical studies. From this experiment we have learned that MLP can be applied to the combined risk factor analysis of biological data which can not be provided by the conventional statistical method.
어떤 클래스에 속한 레코드의 개수가 다른 클래스들에 속한 레코드의 개수보다 매우 많은 경우에, 이 데이터 집합을 '불균형 데이터 집합'이라고 한다. 데이터 분류에 사용되는 많은 기법들은 이러한 불균형 데이터에 대해서 저조한 성능을 보인다. 어떤 기법의 성능을 평가할 때에 적중률뿐만 아니라, 민감도와 특이도도 함께 측정하여야 한다. 고객의 이탈을 예측하는 문제에서 '유지' 레코드가 다수 클래스를 차지하고, '이탈' 레코드는 소수 클래스를 차지한다. 민감도는 실제로 '유지'인 레코드를 '유지'로 예측하는 비율이고, 특이도는 실제로 '이탈'인 레코드를 '이탈'로 예측하는 비율이다. 많은 데이터 마이닝 기법들이 불균형 데이터에 대해서 저조한 성능을 보이는 것은 바로 소수 클래스의 적중률인 특이도가 낮기 때문이다. 불균형 데이터 집합에 대처하는 과거 연구 중에는 소수 클래스를 Oversampling하여 균형 데이터 집합을 생성한 후에 데이터 마이닝 기법을 적용한 연구들이 있다. 이렇게 균형 데이터 집합을 생성하여 예측을 수행하면, 특이도는 다소 향상시킬 수 있으나 그 대신 민감도가 하락하게 된다. 본 연구에서는 민감도는 유지하면서 특이도를 향상시키는 모델을 개발하였다. 개발된 모델은 Support Vector Machine (SVM), 인공신경망(ANN) 그리고 의사결정나무 기법 등으로 구성된 하이브리드 모델로서, Hybrid SVM Model이라고 명명하였다. 구축과정 및 예측과정은 다음과 같다. 원래의 불균형 데이터 집합으로 SVM_I Model과 ANN_I Model을 구축한다. 불균형 데이터 집합으로부터 Oversampling을 하여 균형 데이터 집합을 생성하고, 이것으로 SVM_B Model을 구축한다. SVM_I Model은 민감도에서 우수하고, SVM_B Model은 특이도에서 우수하다. 입력 레코드에 대해서 SVM_I와 SVM_B가 동일한 예측치를 도출하면 그것을 최종 해로 결정한다. SVM_I와 SVM_B가 상이한 예측치를 도출한 레코드에 대해서는 ANN과 의사결정나무의 도움으로 판별 과정을 거쳐서 최종 해를 결정한다. 상이한 예측치를 도출한 레코드에 대해서는, ANN_I의 출력값을 입력속성으로, 실제 이탈 여부를 목표 속성으로 설정하여 의사결정나무 모델을 구축한다. 그 결과 다음과 같은 2개의 판별규칙을 얻었다. 'IF ANN_I output value < 0.285, THEN Final Solution = Retention' 그리고 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn'이다. 제시되어 있는 규칙의 Threshold 값인 0.285는 본 연구에서 사용한 데이터에 최적화되어 도출된 값이다. 본 연구에서 제시하는 것은 Hybrid SVM Model의 구조이지 특정한 Threshold 값이 아니기 때문에 이 Threshold 값은 대상 데이터에 따라서 얼마든지 변할 수 있다. Hybrid SVM Model의 성능을 UCI Machine Learning Repository에서 제공하는 Churn 데이터 집합을 사용하여 평가하였다. Hybrid SVM Model의 적중률은 91.08%로서 SVM_I Model이나 SVM_B Model의 적중률보다 높았다. Hybrid SVM Model의 민감도는 95.02%이었고, 특이도는 69.24%이었다. SVM_I Model의 민감도는 94.65%이었고, SVM_B Model의 특이도는 67.00%이었다. 그러므로 본 연구에서 개발한 Hybrid SVM Model이 SVM_I Model의 민감도 수준은 유지하면서 SVM_B Model의 특이도보다는 향상된 성능을 보였다.
본 연구는 50세 이상 고령장애인이 경험한 차별과 이들이 받는 사회적 지지가 신체적 건강(주관적 건강, 만성질환빈도)과 정신적 건강(우울도)에 미치는 영향이 장애정체감을 통해 매개되는지를 살피고 있다. 또한 이러한 매개효과가 중증장애인과 경증장애인에게서 차별적으로 나타나는가를 함께 살피고 있다. 경험적 분석을 위해서 본 연구진이 수집한 장애인패널조사자료(2016년도)를 활용하였으며, 구조방정식 모형분석과 장애정도에 따른 다중집단분석을 실시하였다. 구조방정식분석결과에 의하면, 장애정체감에 대한 사회적 지지의 직접효과가 나타났다. 신체적 건강은 사회적 지지의 직접적인 영향을 받는 것으로 나타났다. 정신적 건강의 경우 장애차별경험, 사회적 지지, 장애정체감, 신체적 건강의 직접효과와 함께 사회적 지지가 갖는 장애정체감의 매개효과가 나타났다. 이는 고령장애인에 대한 사회적 지지는 이들의 장애정체감을 향상하여 결과적으로 정신건강 증진에 기여함을 의미한다. 한편 다중집단분석의 결과, 경증장애인에게서는 장애차별경험이 장애정체감에 미치는 효과가 유의하였으나, 중증장애인에게서는 그러한 효과가 유의하지 않았다. 이러한 결과는 중증장애인의 경우 공통근거수준이 낮으며, 경증장애인의 경우 외적장벽 수준이 낮은 것과 관계가 있는 것으로 추정된다. 중증 및 고령장애인의 차별성에 기초한 건강지원 전략이 필요함을 시사한다.
본 논문은 대용량의 텍스트 문서를 효율적으로 처리하기 위해 단어 분별도(trrm discrimination)개념을 이용한 2단계 합성 요약화일 방법(THM)을 제안한다. 또한 보다 더 나은 검색성능을 위해 2단계 합성 요약 화일 방법에 고분별력 단어들의 유사성에 의해 유사한 요약들은 함께 결집하는 Yoo가 제안한 요약결집 방법을 적용한다. 검색 시간, 부가 저장 공간 측면에서 제안된 2단계 합성 요약화일(THM)의 성능 분석 모델을 제공하고 기존의 방법들 즉, 비트 슬라이스 방법(BM), 2단계 요약화일 방법(TM) 합성 방법(HM)들과 성능 평가를 수행한다. 성능 비교결과 일치하는 레코드 수가 160이하일때 100,000개의 대용량 데이터베이스에서 제안된 THM이 검색 성능면에 있어서 가장 좋은 성능을 보인다.
본 논문에서는 메쉬 법선 벡터들의 방향 분포를 3차원 모델의 특징 기술자로 제안한다. 특징 기술자로써 요구되는 회전 불변을 주성분 분석법(PCA)으로 처리하고 잡음첨가에 강건하도록 메쉬 간략화를 수행한다. 표면적이 작은 면에 대한 정보가 특징 기술자를 구성하는데 더 적게 반영되도록 법선 벡터의 분포를 각 다각형의 면적에 비례하게 표본을 뽑아 법선 벡터에 가중치를 적용하고 보간하여 변별력을 높인다. 모델간의 유사도는 특징 기술자의 거리를 정규화한 확률 밀도 히스토그램의 L1-norm으로 측정한다. 제안한 방법이 기존 방법에 비해 검색 순위 평균(ANMRR)으로 나타낸 검색 성능이 약 17.2%, 정량적 변별 척도로 나타낸 검색 성능이 최소 9.6%에서 최대 17.5%까지 향상되었음을 알 수 있었다.
Purpose: The purpose of this study was to evaluate and compare the predictive ability of three mortality scoring systems; Acute Physiology and Chronic Health Evaluation(APACHE) III, Simplified Acute Physiology Score(SAPS) II, and Mortality Probability Model(MPM) II in discriminating in-hospital mortality for intensive care unit(ICU) patients with spontaneous intracerebral hemorrhage. Methods: Eighty-nine patients admitted to the ICU at a university hospital in Daejeon Korea were recruited for this study. Medical records of the subject were reviewed by a researcher from January 1, 2003 to March 31, 2004, retrospectively. Data were analyzed using SAS 8.1. General characteristic of the subjects were analyzed for frequency and percentage. Results: The results of this study were summarized as follows. The values of the Hosmer-Lemeshow's goodness-of-fit test for the APACHE III, the SAPS II and the MPM II were chi-square H=4.3849 p=0.7345, chi-square H=15.4491 p=0.0307, and chi-square H=0.3356 p=0.8455, respectively. Thus, The calibration of the MPM II found to be the best scoring system, followed by APACHE III. For ROC curve analysis, the areas under the curves of APACHE III, SAPS II, and MPM II were 0.934, 0.918 and 0.813, respectively. Thus, the discrimination of three scoring systems were satisfactory. For two-by-two decision matrices with a decision criterion of 0.5, the correct classification of three scoring systems were good. Conclusion: Both the APACHE III and the MPM II had an excellent power of mortality prediction and discrimination for spontaneous intracerebral hemorrhage patients in ICU.
Purpose: Conventional methods used to evaluate seeds viability are destructive, time consuming, and require the use of chemicals, which are not feasible to implement to process plant in seed industry. In this study, the effectiveness of Fourier transform near infrared (FT-NIR) spectroscopy to differentiate between viable and nonviable watermelon seeds was investigated. Methods: FT-NIR reflectance spectra of both viable and non-viable (aging) seeds were collected in the range of 4,000 - 10,000 $cm^{-1}$ (1,000 - 2,500 nm). To differentiate between viable and non-viable seeds, a multivariate classification model was developed with partial least square discrimination analysis (PLS-DA). Results: The calibration and validation set derived from the PLS-DA model classified viable and non-viable seeds with 100% accuracy. The beta coefficient of PLS-DA, which represented spectral difference between viable and non-viable seeds, showed that change in the chemical component of the seed membrane (such as lipids and proteins) might be responsible for the germination ability of the seeds. Conclusions: The results demonstrate the possibility of using FT-NIR spectroscopy to separate seeds based on viability, which could be used in the development of an online sorting technique.
Brian Ascalon Roley's American Son, one of the outstanding Filipino American novels after the LA riots, critically deals with a racial issue of his community which has been intermingled with the myth of model minority. Gabe and Thomas, considered as obedient Filipino younger immigrants, are asked to achieve the American dream as a way to place themselves at the center of the mainstream white society. However, they recognize that they cannot be accepted as a suitable subject for the invincible racism deeply rooted in the society. While Tomas refuses to become a model minority by identifying himself with the Mexican, Gabe is expected to become an idealistic subject of model minority by his mother since he complies with the rules of the mainstream society. However, he accepts his brother's violent way of life in that violence is necessary to protect his family from the racial discrimination in America. Though he is his mother's hope for model minority, he recognizes the only condition to achieve her expectation is the American society where there is no racism at all. However, by taking the case of Gabe and Thomas, Roley suggests that the younger generation of Filipino American immigrants have no choice but to accept violence to survive in the American society because racism always threatens their life.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권8호
/
pp.2101-2123
/
2023
Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.