• 제목/요약/키워드: Discrete-Element-Method

Search Result 508, Processing Time 0.027 seconds

Linear Cutting Simulation for Granite using Discrete Element Method (이산요소법을 이용한 화강암의 선형절삭 시뮬레이션)

  • Jun, Chul-Woong;Sohn, Jeong-Hyun;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2016
  • The pick cutter, which directly contacts and crushes the rock, is the expendable part of a roadheader. The arrangement and angle of attachment of the pick cutter are important factors that determine excavator performance. It is necessary to numerically calculate the contact between the pick cutter and rock. The rock is defined as a set of particles using the discrete element method. The parallel bond model is used to define the bonds between particles. The properties of granite that are measured by the uniaxial compressive test are applied to the numerical rock model. The pick cutter is defined by the polygon elements. The linear cutting simulation is considered to simulate the contact between the pick cutter and rock. The results of the simulation show the rock breaking due to contact with the pick cutter.

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

Analysis of Particle Packing Process by Contact Model in Discrete Element Method (입자 패킹 공정에 대한 접촉모델별 이산요소법 해석)

  • Lyu, Jaehee;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • In many industries, particle packing is adopted quite frequently. In the particle packing process, the Discrete Element Method (DEM) can analyze the multi-collision of particles efficiently. Two types of contact models are frequently used for the DEM. One is the linear spring model, which has the fastest calculation time, and the other is the Hertz-Mindlin model, which is the most frequently used contact model employing the DEM. Meanwhile, very tiny particles in the micrometer order are used in modern industries. In the micro length order, surface force is important to decreased particle size. To consider the effect of surface force in this study, we performed a simulation with the Hertz-Mindlin model and added the Johnson-Kendall-Roberts (JKR) theory depicting surface force with surface energy. In addition, three contact models were compared with several parameters. As a result, it was found that the JKR model has larger residual stress than the general contact models because of the pull-off force. We also validated that surface force can influence particle behavior if the particles are small.

Bonded-cluster simulation of tool-rock interaction using advanced discrete element method

  • Liu, Weiji;Zhu, Xiaohua;Zhou, Yunlai;Li, Tao;Zhang, Xiangning
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.469-477
    • /
    • 2019
  • The understanding of tool-rock interaction mechanism is of high essence for improving the rock breaking efficiency and optimizing the drilling parameters in mechanical rock breaking. In this study, the tool-rock interaction models of indentation and cutting are carried out by employing the discrete element method (DEM) to examine the rock failure modes of various brittleness rocks and critical indentation and cutting depths of the ductile to brittle failure mode transition. The results show that the cluster size and inter-cluster to intra-cluster bond strength ratio are the key factors which influence the UCS magnitude and the UCS to BTS ratio. The UCS to BTS strength ratio can be increased to a more realistic value using clustered rock model so that the characteristics of real rocks can be better represented. The critical indentation and cutting depth decrease with the brittleness of rock increases and the decreasing rate reduces dramatically against the brittleness value. This effort may lead to a better understanding of rock breaking mechanisms in mechanical excavation, and may contribute to the improvement in the design of rock excavation machines and the related parameters determination.

Effects on the Washboarding Phenomenon Based on the Size of the Rotating Body Using a Discrete Element Method (이산요소법을 이용한 회전체의 크기에 따른 Washboarding 현상에 대한 영향 분석)

  • Lee, Seoungjun;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.25-32
    • /
    • 2021
  • Washboarding is a crucial problem occurring on unpaved roads. This phenomenon involves the formation of ripples on the surface of the unpaved road and causes a critical problem to vehicles and riders. The phenomenon is affected by several parameters, but we focused on the velocity and the size of the rotating body. In the precedent research, we observed that a critical velocity existed for the occurrence of the phenomenon, and the phenomenon's grade was related to the velocity. Therefore, this study, using a discrete element method, aimed to analyze the relation between the velocity and the size of the rotating body for the occurrence of the phenomenon and perform a fast Fourier transform (FFT) analysis to determine the correlation between the phenomenon and the period. The study observed that the critical velocity could vary from the velocity and the size of the rotating body, and there was a certain range of frequency for the occurrence of the Washboarding phenomenon.

Study on damage law and width optimization design of coal pillar with the discrete element method

  • Chuanwei Zang;Bingzheng Jiang;Xiaoshan Wang;Hao Wang;Jia Zhou;Miao Chen;Yu Cong
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.555-563
    • /
    • 2024
  • The reasonable setting of coal pillar width plays a key role in guaranteeing the steadiness of surrounding rock of fully mechanized caving gateroad driving along the next goaf. Based on the engineering background of the Bayangaole mine, the discrete element method was used to simulate the fracture evolution of coal pillars with different pillar widths. The results show that the damage rate of the coal pillar increases with the decrease in the width of the coal pillar. Once the coal pillar width is smaller than 6 m, cracks run through the coal pillar, and the coal pillar is completely damaged. In the middle of the coal pillar, which has a width of 6 m and above, there is a relatively complete area with low damage. The results show that the pillar width of 6 m is the most appropriate. Field tests prove that the reserved width of a 6 m small coal pillar can effectively control the surrounding rock deformation, ensuring the overall steadiness of the gateroad in the thick coal seam. It is hoped that this study will offer some reference for the determination of the reasonable size of the coal pillar.

Discrete element numerical analysis for simulating trapdoor tests to assess loosening earth pressure on tunnel linings

  • Chaemin Hwang;Junhyuk Choi;Jee-Hee Jung;Hangseok Choi
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.571-581
    • /
    • 2024
  • Concrete linings in tunnels constructed by drilling and blasting such as NATM serve as a secondary support structure. However, these linings can face unexpected earth pressures if the primary support deteriorates or if ground conditions become unfavorable. It is crucial to determine the loosening earth pressure that allows the lining to maintain its structural integrity and prevent damage caused by this pressure. This study proposes a numerical model for simulating the trapdoor test and developing a method for calculating the loosening earth pressure. The discrete element method (DEM) was employed to describe the soil characteristics around the tunnel. Using this numerical model, a sequence of experimental trapdoor steps was simulated, and the loosening earth pressure was analyzed. Contact parameters were calibrated based on an analysis of a triaxial compression test. The reliability of the developed model was confirmed through a comparison between simulation results and laboratory test findings. The model was used to calculate the contact force applied to the trapdoor plate and to assess the settlement of soil particles. Furthermore, the model accounted for the soil-arching effect, which effectively redistributes the load to the surrounding areas. The proposed model can be applied to analyze the tunnel's cross-sectional dimensions and design stability under various ground conditions.

Non-linear modeling of masonry churches through a discrete macro-element approach

  • Panto, Bartolomeo;Giresini, Linda;Sassu, Mauro;Calio, Ivo
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.223-236
    • /
    • 2017
  • Seismic assessment and rehabilitation of Monumental Buildings constitute an important issue in many regions around the world to preserve cultural heritage. On the contrary, many recent earthquakes have demonstrated the high vulnerability of this type of structures. The high nonlinear masonry behaviour requires ad hoc refined finite element numerical models, whose complexity and computational costs are generally unsuitable for practical applications. For these reasons, several authors proposed simplified numerical strategies to be used in engineering practice. However, most of these alternative methods are oversimplified being based on the assumption of in-plane behaviour of masonry walls. Moreover, they cannot be used for modelling the monumental structures for which the interaction between plane and out-plane behaviour governs the structural response. Recently, an innovative discrete-modelling approach for the simulation of both in-plane and out of-plane response of masonry structures was proposed and applied to study several typologies of historic structures. In this paper the latter model is applied with reference to a real case study, and numerically compared with an advanced finite element modelling. The method is applied to the St.Venerio church in Reggiolo (Italy), damaged during the 2012 Emilia-Romagna earthquake and numerically investigated in the literature.

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

Approximate discrete variable optimization of plate structures using dual methods

  • Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.359-372
    • /
    • 1995
  • This study presents an efficient method for optimum design of plate and shell structures, when the design variables are continuous or discrete. Both sizing and shape design variables are considered. First the structural responses such as element forces are approximated in terms of some intermediate variables. By substituting these approximate relations into the original design problem, an explicit nonlinear approximate design task with high quality approximation is achieved. This problem with continuous variables, can be solved by means of numerical optimization techniques very efficiently, the results of which are then used for discrete variable optimization. Now, the approximate problem is converted into a sequence of second level approximation problems of separable form and each of which is solved by a dual strategy with discrete design variables. The approach is efficient in terms of the number of required structural analyses, as well as the overall computational cost of optimization. Examples are offered and compared with other methods to demonstrate the features of the proposed method.