• Title/Summary/Keyword: Discrete tangent vector

Search Result 5, Processing Time 0.018 seconds

APPROXIMATE TANGENT VECTOR AND GEOMETRIC CUBIC HERMITE INTERPOLATION

  • Jeon, Myung-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.575-584
    • /
    • 2006
  • In this paper we introduce a discrete tangent vector of a polygon defined on each vertex by a linear combination of forward difference and backward difference, and show that if the polygon is originated from a smooth curve then direction of the discrete tangent vector is a second order approximation of the direction of the tangent vector of the original curve. Using this discrete tangent vector, we also introduced the geometric cubic Hermite interpolation of a polygon with controlled initial and terminal speed of the curve segments proportional to the edge length. In this case the whole interpolation is $C^1$. Experiments suggest that about $90\%$ of the edge length is the best fit for the initial and terminal speeds.

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

VISUAL CURVATURE FOR SPACE CURVES

  • JEON, MYUNGJIN
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.487-504
    • /
    • 2015
  • For a smooth plane curve, the curvature can be characterized by the rate of change of the angle between the tangent vector and a fixed vector. In this article we prove that the curvature of a space curve can also be given by the rate of change of the locally defined angle between the tangent vector at a point and the nearby point. By using height functions, we introduce turning angle of a space curve and characterize the curvature by the rate of change of the turning angle. The main advantage of the turning angle is that it can be used to characterize the curvature of discrete curves. For this purpose, we introduce a discrete turning angle and a discrete curvature called visual curvature for space curves. We can show that the visual curvature is an approximation of curvature for smooth curves.

Maximization of Transmission System Loadability with Optimal FACTS Installation Strategy

  • Chang, Ya-Chin;Chang, Rung-Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.991-1001
    • /
    • 2013
  • Instead of building new substations or transmission lines, proper installation of flexible AC transmission systems (FACTS) devices can make the transmission networks accommodate more power transfers with less expansion cost. In this paper, the problem to maximize power system loadability by optimally installing two types of FACTS devices, namely static var compensator (SVC) and thyristor controlled series compensator (TCSC), is formulated as a mixed discrete-continuous nonlinear optimization problem (MDCP). To reduce the complexity of the problem, the locations suitable for SVC and TCSC installations are first investigated with tangent vector technique and real power flow performance index (PI) sensitivity factor and, with the specified locations for SVC and TCSC installations, a set of schemes is formed. For each scheme with the specific locations for SVC and TCSC installations, the MDCP is reduced to a continuous nonlinear optimization problem and the computing efficiency can be largely improved. Finally, to cope with the technical and economic concerns simultaneously, the scheme with the biggest utilization index value is recommended. The IEEE-14 bus system and a practical power system are used to validate the proposed method.

Mesh Simplification Algorithm Using Differential Error Metric (미분 오차 척도를 이용한 메쉬 간략화 알고리즘)

  • 김수균;김선정;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.288-296
    • /
    • 2004
  • This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even though it has a small distance error measured in distance error metric. This paper proposes a new differential error metric that results in unifying a distance metric and its first and second order differentials, which become tangent vector and curvature metric. Since discrete surfaces may be considered as piecewise linear approximation of unknown smooth surfaces, theses differentials can be estimated and we can construct new concept of differential error metric for discrete surfaces with them. For our simplification algorithm based on iterative edge collapses, this differential error metric can assign the new vertex position maintaining the geometry of an original appearance. In this paper, we clearly show that our simplified results have better quality and smaller geometry error than others.