• Title/Summary/Keyword: Discrete model

Search Result 2,051, Processing Time 0.033 seconds

The Spatial Distribution Characteristics and Determinants of Strong Small Farm: Focusing on Apples (강소농의 공간적 분포특성과 결정요인 분석 -사과를 중심으로-)

  • Kim, Hyun Joong;Lee, Seong Woo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.19 no.4
    • /
    • pp.961-987
    • /
    • 2012
  • The present study is to investigate the characteristics and determinants of spatial distribution of strong small farm by defining the term, strong small farm (SSF) extracting the SSF households data dealing with apples, from 2010 Census of Agriculture, Forestry and Fisheries, Korea. Spatial distribution and concentration of SSF are analyzed based on spatial clustering techniques. We construct discrete dependent variables on strong and non-strong small farms and then analyze the determinants of the SSFs using probit model, with independent variables including population and economic characteristics and management characteristics. As of 2010, the apple SSFs, 1,529 households in total, are geographically concentrated in Gyeonsangbuk-do according to the analysis results. The determinants of SSF are similar to those of farms' earnings. When located in the apple producing area, and participating in producers organization while selling products directly, the farm is highly likely an SSF. The findings and results of the present study are expected to provide fundamental information helpful for preparing and implementing policies for SSFs in that the present study investigates the characteristics of SSF, which is a prerequisite step for SSF-related policies.

A study on the connected-digit recognition using MLP-VQ and Weighted DHMM (MLP-VQ와 가중 DHMM을 이용한 연결 숫자음 인식에 관한 연구)

  • Chung, Kwang-Woo;Hong, Kwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.96-105
    • /
    • 1998
  • The aim of this paper is to propose the method of WDHMM(Weighted DHMM), using the MLP-VQ for the improvement of speaker-independent connect-digit recognition system. MLP neural-network output distribution shows a probability distribution that presents the degree of similarity between each pattern by the non-linear mapping among the input patterns and learning patterns. MLP-VQ is proposed in this paper. It generates codewords by using the output node index which can reach the highest level within MLP neural-network output distribution. Different from the old VQ, the true characteristics of this new MLP-VQ lie in that the degree of similarity between present input patterns and each learned class pattern could be reflected for the recognition model. WDHMM is also proposed. It can use the MLP neural-network output distribution as the way of weighing the symbol generation probability of DHMMs. This newly-suggested method could shorten the time of HMM parameter estimation and recognition. The reason is that it is not necessary to regard symbol generation probability as multi-dimensional normal distribution, as opposed to the old SCHMM. This could also improve the recognition ability by 14.7% higher than DHMM, owing to the increase of small caculation amount. Because it can reflect phone class relations to the recognition model. The result of my research shows that speaker-independent connected-digit recognition, using MLP-VQ and WDHMM, is 84.22%.

  • PDF

Program Design and Implementation for Efficient Application of Heterogeneous Spatial Data Using GMLJP2 Image Compression Technique (GMLJP2 영상압축 기술을 이용한 다양한 공간자료의 효율적인 활용을 위한 프로그램 설계 및 구현)

  • Kim, Yoon-Hyung;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.379-387
    • /
    • 2006
  • The real world is spatially modelled conceptually either as discrete objects or earth surface. The generated data models are then usually represented as vector and raster respectively. Although there are limited cases where only one data model is sufficient to solve the spatial problem at hand, it is now generally accepted that GIS should be able to handle various types of data model. Recent advances in spatial technology introduced even more variety of heterogeneous data models and the need is ever growing to handle and manage efficiently these large variety of spatial data. The OGC (Open GIS Consortium), an international organization pursuing standardization in the geospatial industry. recently introduced the GMLJP2 (Geographic Mark-Up Language JP2) format which enables store and handle heterogeneous spatial data. The GMLJP2 format, which is based on the JP2 format which is an abbreviation for JPEG2000 wavelet image compression format, takes advantage of the versatility of the GML capabilities to add extra data on top of the compressed image. This study takes a close look into the GMLJP2 format to analyse and exploit its potential to handle and mange hetergeneous spatial data. Aerial image, digital map and LIDAR data were successfully transformed end archived into a single GMLJP2 file. A simple viewing program was made to view the heterogeneous spatial data from this single file.

Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Kim, Chun-Soo;Kim, Kyung-Su;Kim, Ji-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.265-282
    • /
    • 2008
  • Based on the site characterization works in a low and intermediate level waste(LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network(DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  • PDF

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.

VOT Derivation for Different Trip Purposes, Travel Modes and Testing of Their Significance (통행목적별 수단별 통행시간가치도출 및 유의성 검정)

  • Kim, Hyeon;Oh, Se-Chang;Choi, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.113-129
    • /
    • 1999
  • It is widely recognized that the value of travel time (VOT) plays an important role both in choosing the transportation alternatives on an individual level, and in analyzing and evaluating transportation plans and other public policy makings on a collective level. There is, however, a great deal of difficulties to correctly estimate the VOT. In addition, although there are lots of methods to estimate the VOT so for, not many recommendations have been presented to reflect the localities associated with the VOT derivation in Korea. This study aims at deriving the VOT for different trip purposes and travel modes with their significances tested. To accomplish this purposes, a logit-based travel mode choice model based on revealed preference (RP) data has been formulated, calibrated using the discrete choice model of LIMDEP package for various trip purpose models. For each trip purpose and travel mode, the VOT has been calculated along with the significance testing of the derived VOTs. From the results given in this research, the VOTs for different purposes and modes are identified different, and they are statistically significant. The updated results here in this paper may be a yardstick in evaluating the transportation plans and policies by providing more detailed VOT information for different categories, especially in urban context.

  • PDF

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Review on Discontinuum-based Coupled Hydro-Mechanical Analyses for Modelling a Deep Geological Repository for High-Level Radioactive Waste (고준위방사성폐기물 심층처분장 모델링을 위한 불연속체 기반 수리-역학 복합거동 해석기법 현황 분석)

  • Kwon, Saeha;Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.309-332
    • /
    • 2021
  • Natural barrier systems surrounding the geological repository for the high-level radioactive waste should guarantee the hydraulic performance for preventing or delaying the leakage of radionuclide. In the case of the behavior of a crystalline rock, the hydraulic performance tends to be decided by the existence of discontinuities, so the coupled hydro-mechanical(HM) processes on the discontinuities should be characterized. The discontinuum modelling can describe the complicated behavior of discontinuities including creation, propagation, deformation and slip, so it is appropriate to model the behavior of a crystalline rock. This paper investigated the coupled HM processes in discontinuum modelling such as UDEC, 3DEC, PFC, DDA, FRACOD and TOUGH-UDEC. Block-based discontinuum methods tend to describe the HM processes based on the fluid flow through the discontinuities, and some methods are combined with another numerical tool specialized in hydraulic analysis. Particle-based discontinuum modelling describes the overall HM processes based on the fluid flow among the particles. The discontinuum methods that are currently available have limitations: exclusive simulations for two-dimension, low hydraulic simulation efficiency, fracture-dominated fluid flow and simplified hydraulic analysis, so it could be improper to the modelling the geological repository. Based on the concepts of various discontinuum modelling compiled in this paper, the advanced numerical tools for describing the accurate coupled HM processes of the deep geological repository should be developed.

Novel two-stage hybrid paradigm combining data pre-processing approaches to predict biochemical oxygen demand concentration (생물화학적 산소요구량 농도예측을 위하여 데이터 전처리 접근법을 결합한 새로운 이단계 하이브리드 패러다임)

  • Kim, Sungwon;Seo, Youngmin;Zakhrouf, Mousaab;Malik, Anurag
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1037-1051
    • /
    • 2021
  • Biochemical oxygen demand (BOD) concentration, one of important water quality indicators, is treated as the measuring item for the ecological chapter in lakes and rivers. This investigation employed novel two-stage hybrid paradigm (i.e., wavelet-based gated recurrent unit, wavelet-based generalized regression neural networks, and wavelet-based random forests) to predict BOD concentration in the Dosan and Hwangji stations, South Korea. These models were assessed with the corresponding independent models (i.e., gated recurrent unit, generalized regression neural networks, and random forests). Diverse water quality and quantity indicators were implemented for developing independent and two-stage hybrid models based on several input combinations (i.e., Divisions 1-5). The addressed models were evaluated using three statistical indices including the root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), and correlation coefficient (CC). It can be found from results that the two-stage hybrid models cannot always enhance the predictive precision of independent models confidently. Results showed that the DWT-RF5 (RMSE = 0.108 mg/L) model provided more accurate prediction of BOD concentration compared to other optimal models in Dosan station, and the DWT-GRNN4 (RMSE = 0.132 mg/L) model was the best for predicting BOD concentration in Hwangji station, South Korea.

Simulation analysis and evaluation of decontamination effect of different abrasive jet process parameters on radioactively contaminated metal

  • Lin Zhong;Jian Deng;Zhe-wen Zuo;Can-yu Huang;Bo Chen;Lin Lei;Ze-yong Lei;Jie-heng Lei;Mu Zhao;Yun-fei Hua
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3940-3955
    • /
    • 2023
  • A new method of numerical simulating prediction and decontamination effect evaluation for abrasive jet decontamination to radioactively contaminated metal is proposed. Based on the Computational Fluid Dynamics and Discrete Element Model (CFD-DEM) coupled simulation model, the motion patterns and distribution of abrasives can be predicted, and the decontamination effect can be evaluated by image processing and recognition technology. The impact of three key parameters (impact distance, inlet pressure, abrasive mass flow rate) on the decontamination effect is revealed. Moreover, here are experiments of reliability verification to decontamination effect and numerical simulation methods that has been conducted. The results show that: 60Co and other homogeneous solid solution radioactive pollutants can be removed by abrasive jet, and the average removal rate of Co exceeds 80%. It is reliable for the proposed numerical simulation and evaluation method because of the well goodness of fit between predicted value and actual values: The predicted values and actual values of the abrasive distribution diameter are Ф57 and Ф55; the total coverage rate is 26.42% and 23.50%; the average impact velocity is 81.73 m/s and 78.00 m/s. Further analysis shows that the impact distance has a significant impact on the distribution of abrasive particles on the target surface, the coverage rate of the core area increases at first, and then decreases with the increase of the impact distance of the nozzle, which reach a maximum of 14.44% at 300 mm. It is recommended to set the impact distance around 300 mm, because at this time the core area coverage of the abrasive is the largest and the impact velocity is stable at the highest speed of 81.94 m/s. The impact of the nozzle inlet pressure on the decontamination effect mainly affects the impact kinetic energy of the abrasive and has little impact on the distribution. The greater the inlet pressure, the greater the impact kinetic energy, and the stronger the decontamination ability of the abrasive. But in return, the energy consumption is higher, too. For the decontamination of radioactively contaminated metals, it is recommended to set the inlet pressure of the nozzle at around 0.6 MPa. Because most of the Co elements can be removed under this pressure. Increasing the mass and flow of abrasives appropriately can enhance the decontamination effectiveness. The total mass of abrasives per unit decontamination area is suggested to be 50 g because the core area coverage rate of the abrasive is relatively large under this condition; and the nozzle wear extent is acceptable.