• Title/Summary/Keyword: Discrete coated

Search Result 13, Processing Time 0.022 seconds

Ecological Studies of Plants for Control of Environmental Pollution, III -The Studies on the Content and Contamination of Heavy Metals and Vegetation of Roadside- (환경오염 방지를 위한 식물의 생태학적 연구(III) -도로변 식생과 중금속 함량 및 오염에 관한 연구)

  • 차종환
    • Journal of Plant Biology
    • /
    • v.17 no.4
    • /
    • pp.158-162
    • /
    • 1974
  • Some ecological attributes of perennial plants and Pb contamination were analyzed for study plots near an entrance of Nevade Test Site at Mercury Valley, Nye County, Nevada. The surface of the desert pavement soil was composed of stones (1 to 4cm diameter). The underside of each stone was coated with coarse and fine sand (about 90%). The profiles of soil were constituted with the A-horizon and C-horizon only. The soil pH at the plots ranges from 7.6 to 8.5, C/N was 13 and cation exchange capacity showed 15me/100g. Nine species and 42 number of individuals were found in all plots. Franseria dumosa and Larrea divaricata were dominant species. The discrete clumps of vegetation were consisted of 9 species of common perennials and these were covered about 25% on desert pavement, on the other words, bare area without vegetation was about 75%. The size and spacing of the plants was irregular. Community coefficient as comparison between shrub species in these study area and those in near the low elevation desert indicated a low degree of similarity. Density, cover and productivity in the study plots as compared with those in the nearest study areas in Mercury Valley showed a higher value. The soils in the studied area involved high heavy metal contents in the plant tissue was higher than those of its soil. The leavds of Lycium andersonii tended to accumulate more Zn and Mo than those of the other species. Larrea divaricata leaves accumulated very high leaves of Fe and Ephedra nevadensis were generally high in Mn. Lead contamination was apparent in foliage of desert vegetation collected alongside the roadway, reflecting the variation in traffic volume. Lead contents greater than fifteen-fold of normal (low traffic) were found in plant foliage alongside the heavily traveled roadway. Lead content of old foliage by the heavily traveled roadway was as much as 129 ppm but that of new foliage 17 ppm only.

  • PDF

Characteristics of Al2O3/ZrO2 Ceramics by the Dispersion Process of ZrO2 Particles (ZrO2 입자의 분산방법에 따른 Al2O3/ZrO2 요업체의 특성)

  • Youn, Sang-Hum;Kim, Jae-Jun;Hwang, Kyu-Hong;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.561-566
    • /
    • 2005
  • For the homogeneous dispersion of $ZrO_2$ particles in $Al_2O_3/ZrO_2$ceramics, Zr-precusors were mixed with oxide $Al_2O_3$powders by chemical routes such as partial precipitation or partial polymerization of Zr-nitrate solutions. In case of the mechanical mixing of ultrafine $Al_2O_3$ and $ZrO_2$ oxide powders, relatively homogeneous dispersion was difficult to achieve so that the particle size and distributions of $ZrO_2$ were relatively inhomogeneous after sintering at high temperature. But when the Zr-Y-hydroxide were co-precipitated to ultrafine $Al_2O_3$ oxide powders followed by calcinations, homogeneous dispersion of nano-sized $ZrO_2$ particles in $Al_2O_3/ZrO_2$ composite ceramics were obtained. But because of the coalescence of dispersed $ZrO_2$ particles, dispersed $ZrO_2$ was grown up to more than 0.2${mu}m$ (200 nm) when sintered at the temperature of higher than $1500^{\circ}C$ But when the sintering temperature was kept to lower than $1400^{\circ}C$ by using nano-sized $\alpha-alumina$, the particle size of dispersed $ZrO_2$ could be sustained below 0.1 ${\mu}m$. But the coalescence of dispersed $ZrO_2$ between $Al_2O_3$ particles could not be avoided so that the mechanical properties were not enhanced contrary to the expectations. So Zr-polyester precursors were precipitated and coated to the surface of ultrafine $\alpha-alumina$ powders by the polymerization of Ethylene Glycol with Citric Acid and Zirconium Nitrate. By this dispersion much more uniform dispersion of $ZrO_2$ was achieved at $1450\~1600^{\circ}C$ of sintering temperature ranges. And due to especially discrete dispersion of $ZrO_2$ between $Al_2O_3$ particles, their mechanical strength was more enhanced than mechanical mixing or hydroxide precipitation methods.

Optical and Hydrophobic Properties of Ag Deposited ZnO Nanorods on ITO/PET (ITO/PET 기판 위에 성장된 산화아연 나노로드에 형성된 은 입자의 광학적 특성 및 소수성 표면 연구)

  • Ko, Yeong-Hwan;Kim, Myung-Sub;Yu, Jae-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • We investigated the optical and hydrophobic properties of the deposited silver (Ag) zinc oxide (ZnO) nanorods (NRs) on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates (i.e., ITO/PET). The ZnO NRs were grown by an electrochemical deposition using a sputtered ZnO seed layer and the Ag was deposited by using a thermal evaporator. For comparison, the same fabrication process was carried out on the bare ITO/PET without ZnO NRAs. Due to the discrete surface of ZnO NRs, the deposited Ag was formed as nano-scale particles, while the Ag became film-like for bare ITO/PET. In order to control the size and amount of Ag particles, the Ag deposition time was changed from 100 to 600 s. When the deposition time was increased, the Ag particles became larger and denser, and the absorptance was increased. This enhanced absorptance may be due to the localized surface plasmon resonance of Ag particles. Furthermore, the relatively high hydrophobicity was observed for the deposited Ag on the ZnO NRs/ITO/PET. These improved optical and surface properties are expected to be useful for flexible photovoltaic and optoelectronic devices.