• Title/Summary/Keyword: Discrete Wavelet transform

Search Result 615, Processing Time 0.02 seconds

The Three Directional Separable Processing Method for Double-Density Wavelet Transformation Improvement (이중 밀도 웨이브렛 변환의 성능 향상을 위한 3방향 분리 처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.131-143
    • /
    • 2012
  • This paper introduces the double-density discrete wavelet transform using 3 direction separable processing method, which is a discrete wavelet transform that combines the double-density discrete wavelet transform and quincunx sampling method, each of which has its own characteristics and advantages. The double-density discrete wavelet transform is nearly shift-invariant. But there is room for improvement because not all of the wavelets are directional. That is, although the double-density DWT utilizes more wavelets, some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. The dual-tree discrete wavelet transform has a more computationally efficient approach to shift invariance. Also, the dual-tree discrete wavelet transform gives much better directional selectivity when filtering multidimensional signals. But this transformation has more cost complexity Because it needs eight digital filters. Therefor, we need to hybrid transform which has the more directional selection and the lower cost complexity. A solution to this problem is a the double-density discrete wavelet transform using 3 direction separable processing method. The proposed wavelet transformation services good performance in image and video processing fields.

A Study on Noise Removal Using Over-sampled Discrete Wavelet Transforms (과표본화 이산 웨이브렛 변환의 잡음제거에 관한 연구)

  • Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • The standard application area of over-sampled discrete wavelet transform is noise removal technology for digital images. Comparing dual density discrete wavelet transform with dual tree discrete wavelet transform, we have almost similar characteristics. In this paper, several discrete wavelet transforms are accomplished on digital image existing with noise, noises are removed with threshold processing algorithm on subband, performance evaluation experiments of the reconstructed images are accomplished. If we decide appropriate threshold value, the effect noise removal is possible. In this paper, we can certified that the suggested algorithm of 3-direction separable processing with 2 dimension dual density discrete wavelet transform is superior to several experiment results.

Hierarchical classification of Fingerprints using Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 지문의 계층적 분류)

  • Kwon, Yong-Ho;Lee, Jung-Moon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.403-408
    • /
    • 1999
  • An efficient method is developed for classifying fingerprint data based on 2-D discrete wavelet transform. Fingerprint data is first converted to a binary image. Then a multi-level 2-D wavelet transform is performed. Vertical and horizontal subbands of the transformed data show typical energy distribution patterns relevant to the fingerprint categories. The proposed method with moderate level of wavelet transform is successful in classifying fingerprints into 5 different types. Finer classification is possible by higher frequency subbands and closer analysis of energy distribution.

  • PDF

Decoupling of Free Decay Roll Data by Discrete Wavelet Transform (이산 웨이블렛 변환을 이용한 자유감쇠 횡요 데이타의 분리)

  • Kwon, Sun-Hong;Lee, Hee-Sung;Lee, Hyoung-Suk;Ha, Mun-Keun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.169-173
    • /
    • 2001
  • This study presents the results of decoupling of free decay roll test data by discrete wavelet transform. Free roll decay test was performed to decide the coefficients of damping terms in equation of motion. During the experiment, a slight yaw motion was found while the model was in the free roll decay motion. Discrete wavelet transform was applied to the signal to extract the pure roll motion. The results were compared to those of the Fourier transform. DWT was able to decouple the two signals efficiently while the Fourier transform was not.

  • PDF

The Digital Image Processing Method Using Triple-Density Discrete Wavelet Transformation (3중 밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리 기법)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.3
    • /
    • pp.133-145
    • /
    • 2012
  • This paper describes the high density discrete wavelet transformation which is one that expands an N point signal to M transform coefficients with M > N. The double-density discrete wavelet transform is one of the high density discrete wavelet transformation. This transformation employs one scaling function and two distinct wavelets, which are designed to be offset from one another by one half. And it is nearly shift-invariant. Similarly, triple-density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. Specifically, the spectrum of the first wavelet is concentrated halfway between the spectrum of the second wavelet and the spectrum of its dilated version. In addition, the second wavelet is translated by half-integers rather than whole-integers in the frame construction. This arrangement leads to high density wavelet transformation. But this new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard and double-density discrete wavelet transformation in terms of multiple directions. Resultingly, the proposed wavelet transformation services good performance in image and video processing fields.

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

Application of Technique Discrete Wavelet Transform for Acoustic Emission Signals (음향방출신호에 대한 이산웨이블릿 변환기법의 적용)

  • 박재준;김면수;김민수;김진승;백관현;송영철;김성홍;권동진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.585-591
    • /
    • 2000
  • The wavelet transform is the most recent technique for processing signals with time-varying spectra. In this paper, the wavelet transform is utilized to improved the assessment and multi-resolution analysis of acoustic emission signals generating in partial discharge. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals in case of applied voltage 20[kv]. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We applied FIR(Finite Impulse Response)digital filter algorithm in discrete to suppression for random noise. The white noise be included high frequency component denoised as decomposition of discrete wavelet transform level-3. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of acting(the early period, the last period) .

  • PDF

Digital Image Processing Using Non-separable High Density Discrete Wavelet Transformation (비분리 고밀도 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.165-176
    • /
    • 2013
  • This paper introduces the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. The high density discrete wavelet transformation is a new set of dyadic wavelet transformation with two generators. The construction provides a higher sampling in both time and frequency. This new transform is approximately shift-invariant and has intermediate scales. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs and some lack a dominant spatial orientation, which prevents them from being able to isolate those directions. A solution to this problem is a non separable method. The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously than the separable two dimensional schemes. Proposed wavelet transformation can generate sub-images of multiple degrees rotated versions. Therefore, This method services good performance in image processing fields.

Classification of ECG arrhythmia using Discrete Cosine Transform, Discrete Wavelet Transform and Neural Network (DCT, DWT와 신경망을 이용한 심전도 부정맥 분류)

  • Yoon, Seok-Joo;Kim, Gwang-Jun;Jang, Chang-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.727-732
    • /
    • 2012
  • This paper presents an approach to classify normal and arrhythmia from the MIT-BIH Arrhythmia Database using Discrete Cosine Transform(DCT), Discrete Wavelet Transform(DWT) and neural network. In the first step, Discrete Cosine Transform is used to obtain the representative 15 coefficients for input features of neural network. In the second step, Discrete Wavelet Transform are used to extract maximum value, minimum value, mean value, variance, and standard deviation of detail coefficients. Neural network classifies normal and arrhythmia beats using 55 numbers of input features, and then the accuracy rate is 98.8%.

Super-resolution Algorithm using Discrete Wavelet Transform for Single-image (이산 웨이블릿 변환을 이용한 영상의 초고해상도 기법)

  • Lim, Jong-Myeong;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.17 no.2
    • /
    • pp.344-353
    • /
    • 2012
  • In this paper, we propose a super-resolution algorithm using discrete wavelet transform. In general super-resolution algorithms for single-image, probability based operations have been used for searching high-frequency components. Consequently, the complexity of the algorithm causes the increase of processing time. In the proposed algorithm, we use discrete wavelet transform to find high-frequency sub-bands. We perform inverse discrete wavelet transform using input image and high-frequency sub-bands of the same resolution as the input image which are obtained by performing discrete wavelet transform without down-sampling and then we obtain image with high-resolution. In the proposed algorithm, we use the down-sampled version of the original image ($512{\times}512$) as a test image ($256{\times}256$) to compare the performance of algorithms. Through experimental results, we confirm the improved efficiency of the proposed algorithm comparing with conventional interpolation algorithms and also decreased processing time comparing the probability based operations.