• Title/Summary/Keyword: Discrete Ordinates Method

Search Result 67, Processing Time 0.022 seconds

A Study on the Turbulent Natural Convection - Radiative Heat Transfer In a Partitioned Enclosure (차폐막이 있는 밀폐공간 내에서의 난류 자연대류 - 복사열전달에 관한 연구)

  • 박경우;이주형;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2738-2750
    • /
    • 1994
  • The Effects of radiative heat transfer on turbulent flow in a partitioned enclosure is studied numerically. The enclosure is partially divided by a thin, poorly conducting vertical divider projecting from the ceiling of the enclosure. The low Reynolds number $k-{\epsilon}$ model is adopted to calculate the turbulent flow field. The solutions to the radiative transfer equations are obtained by the discrete ordinates method(DOM). This method is based on control volume method and is compatible with the SIMPLER algorithm used to solve the momentum and energy equations. The effects of optical thickness and Planck number on the flow, temperature fields and heat transfer rates are investigated for a moderate Rayleigh number($=10^9$). The changes in buoyant flow fields and temperature distributions due to the variation of baffle length are also analyzed. From the predictions, radiant heat exchange between the baffle and the sidewalls strongly influences the temperature distribution in the baffle and its vicinity and total heat transfer increases as the optical thickness and the baffle length decrease. It is possible to neglect the radiative heat transfer effect when Planck number is over one.

NUCLEAR DATA UNCERTAINTY AND SENSITIVITY ANALYSIS WITH XSUSA FOR FUEL ASSEMBLY DEPLETION CALCULATIONS

  • Zwermann, W.;Aures, A.;Gallner, L.;Hannstein, V.;Krzykacz-Hausmann, B.;Velkov, K.;Martinez, J.S.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.343-352
    • /
    • 2014
  • Uncertainty and sensitivity analyses with respect to nuclear data are performed with depletion calculations for BWR and PWR fuel assemblies specified in the framework of the UAM-LWR Benchmark Phase II. For this, the GRS sampling based tool XSUSA is employed together with the TRITON depletion sequences from the SCALE 6.1 code system. Uncertainties for multiplication factors and nuclide inventories are determined, as well as the main contributors to these result uncertainties by calculating importance indicators. The corresponding neutron transport calculations are performed with the deterministic discrete-ordinates code NEWT. In addition, the Monte Carlo code KENO in multi-group mode is used to demonstrate a method with which the number of neutron histories per calculation run can be substantially reduced as compared to that in a calculation for the nominal case without uncertainties, while uncertainties and sensitivities are obtained with almost the same accuracy.

Simulation for the Flowing Water Purification with Spring Shape Inside Chamber (챔버 내측에 스프링형상을 갖는 유수형 자외선 살균장치 시뮬레이션)

  • Jung, Byung-Gyeon;Jeong, Byeong-Ho;Lee, Jin-Jong;Jung, Byeong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.411-416
    • /
    • 2010
  • Interest in application of ultraviolet light technology for primary disinfection of potable water in drinking water treatment plants has increased significantly in recent years. The efficacy of disinfection processes in water purification systems is governed by several key factors, including reactor hydraulics, disinfectant chemistry, and microbial inactivation kinetics. The objective of this work was to develop a computational fluid dynamics(CFD) model to predict velocity fields, mass transport, chlorine decay, and microbial inactivation in a continuous flow reactor. In this paper, It describe the how to design optimal UV disinfection device for ground water, BWT and rainwater. Spring shape instrument silver coated located in inner side of disinfection chamber. It make lead the active flowing movement target water and maximize disinfection performance. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method, performed simulation and proved satisfied performance.

Criticality Safety Determination of Spent Fuel Storage Vault (기사용(旣使用) 핵연료저장시(核燃料貯藏時) 핵임계(核臨界) 안전성(安全性) 결정(決定))

  • Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.1-4
    • /
    • 1979
  • Effective multiplication factor has been calculated for one PWR fresh fuel assembly immersed in a spent fuel storage vault on the basis of the neutron transport theory. A numerical calculation has been carried out by means of Sn approximation. The method employed in this study is that the energy domain is broken into 16 groups, the angular variable is divided into four discrete direction, i.e., $S_4$, and the spatial variable which is divided into fine meshes at the interface between different materials is discretized into 27 mesh points. The calculated $K_{eff}$ value of 0.6145 seems to be far small in comparison with the value obtained by other author for an infinite array of fuel assemblies.

  • PDF

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

Neutron Reflecting Effects by Water and Concrete (물과 콘크리트에 의한 중성자(中性子)의 반사효과(反射效果))

  • Min, Duck-Kee;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.8 no.1
    • /
    • pp.33-37
    • /
    • 1983
  • Neutron reflecting effects in terms of effective multiplication factor have been calculated with varying water or concrete thickness, and gap distance between concrete reflector and a fissile solution system. A numerical calculation of effective multiplication factors has been carried out by using the discrete ordinates method with the help of the computer code, ANISN. It is revealed that the reflecting .effect by thin concrete is lower than that of the identical thickness of water while the effect by thick water is low compared to that of the identical thickness of concrete. It seems that the effective multiplication factors are first decreasing rapidly with gap distance, which is filled with water, between concrete reflector and the fissile solution system, and then decrease slowly over the distance of about 15cm.

  • PDF

A Numerical Study on the Effect of PCB Structure Variation on the Electronic Equipment Cooling (PCB 구조변화가 전자장비 냉각에 미치는 영향에 관한 수치적 연구)

  • ;;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.12
    • /
    • pp.3329-3343
    • /
    • 1995
  • The interaction of mixed convection and surface radiation in a printed circuit board(PCB) is investigated numerically. The electronic equipment is modeled by a two-dimensional channel with three hot blocks. In order to calculate the turbulent flow characteristics, the low Reynolds number k-.epsilon. model which is proposed by Launder and Sharma is applied. The S-4 approximation is used to solve the radiative transfer equation. The effects of the Reynolds number and geometric configuration variation of PCB on the flow and heat transfer characteristics are analyzed. As the results of this study, it is found that the thermal boundary layer occured at adiabatic wall in case with thermal radiation included, and the effect of radiation is also found to be insignificant for high Reynolds numbers. It is found, as well, that the heat transfer increases as the Reynolds number and block space increase and the channel height decreases and the heat transfer of vertical channel is greater than that of horizontal channel.

Neutron Fluence Evaluation for Reactor Pressure Vessel Using 3D Discrete Ordinates Transport Code RAPTOR-M3G (3차원 수송계산 코드(RAPTOR-M3G)를 이용한 원자로 압력용기 중성자 조사량 평가)

  • Maeng, Young Jae;Lim, Mi Joung;Kim, Byoung Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2014
  • The Code of Federal Regulations, Title 10, Part 50, Appendix H requires surveillance program for reactor pressure vessel(RPV) that the peak neutron fluence at the end of the design life of the vessel will exceed $1.0E+17n/cm^2$ (E>1.0MeV). 2D/1D Synthesis method based on DORT 3.1 transport calculation code has been widely used to determine fast neutron(E>1.0MeV) fluence exposure to RPV in the beltline region. RAPTOR-M3G(RApid Parallel Transport Of Radiation-Multiple 3D Geometries) performing full 3D transport calculation was developed by Westinghouse and KRIST(Korea Reactor Integrity Surveillance Technology) and applied for the evaluations of In-Vessel and Ex-Vessel neutron dosimetry. The reaction rates from measurement and calculation were compared and the results show good agreements each other.

A study on the Analysis of Combustion Gas and its Flow Induced by Fire in an Enclosure (밀폐공간내 화재에 의해 생성된 연소가스 분석 및 유동에 관한 연구)

  • 추병길;조성곤
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.77-93
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened, it is divided by a vertical baffle projecting from ceiling. The solution procedure Includes the standard k- $\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM ) is used for the calculation of radiative heat transfer equation. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The velocity vectors, streamlines, and isothermal lines are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer In the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire.

  • PDF

Simulation of Natural Gas and Pulverized Coal Combustion using 93-PCGC-2 (93-PCGC-2을 이용한 천연가스 연소와 미분탄 연소 모사)

  • 조석연;서경원;이진욱
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.50-55
    • /
    • 1995
  • 향상되어진 93-PCGC-2는 기존의 PCGC-2와 같이 미분탄 연소를 포함하는 다양한 반응성흐름과 비반응성 흐름을 설명하기 위해 2차원 정상상태 모델로 제시되어 졌다. 93-PCGC-2는 실린더형의 축 대칭계에 응용되어질 수 있고, 난류(Turbulence)는 유체역학식과 연소기구 양쪽을 위해 고려되어졌으며, 불연속 세로좌표 방법(Discrete Ordinates Method)을 이용하여 기체, 벽 및 입자들로부터의 복사열(Radiation)을 모사하였다. 입자상은 입자 무리들의 평균 경로들을 따라 해석하는 Lagrangian계의 해석법으로 모델화되어졌다. 석탄의 팽윤(Swelling)과 촤의 반응성에 관한 부모델과 더불어 새롭게 일반화된 석탄 탈휘발화 부모델 (FG-DVC)도 첨가되어졌다. 비균일 반응기구는 확산과 화학반응 둘 모두를 고려하였다. 주요 기상반응은 국부 순간 평형을 가정하여 모델화하였다. 그래서 반응속도는 혼합의 난류속도에 의해 제한되어진다. Thermal NOx과 Fuel NOx의 유한속도 화학론(Finite Rate Chemstry)에 대한 부모델은 화학반응속도론와 난류성의 통계치를 통합하여 만들어져 있다. 기상은 반복적인 line-by-line기교에 의해 풀려지는 elliptic partial differential equation으로 묘사되어진다. 수치적인 안정을 고려하기 위해 under-relaxation이 이용되어졌다. 이렇게 코드화된 93-PCGC-2는 연소를 위해 모사되어졌다. 또한 더 나아가 이 수치모델의 활용범위는 미분탄의 가스화에도 활용되어질 것으로 기대되어진다.

  • PDF