• Title/Summary/Keyword: Discrete Haar Wavelet Transform

Search Result 11, Processing Time 0.029 seconds

Performance Improvement of Aerial Images Taken by UAV Using Daubechies Stationary Wavelet (Daubechies 정상 웨이블릿을 이용한 무인항공기 촬영 영상 성능 개선)

  • Kim, Sung-Hoon;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.539-543
    • /
    • 2016
  • In this paper, we study the technique to improve the performance of the aerial images taken by UAV using daubechies stationary wavelet transform. When aerial images taken by UAV were damaged by gaussian noise very commonly applied, the experiment for image performance improvement was performed. It was known that stationary wavelet transform is the transferring solution to the problem occurred by down sampling from DWT also more efficient to remove noise than DWT. Also haar wavelet is discontinuous function so not efficient for smooth signal and image processing. Therefore, this study is confirmed that the noise can be removed by daubechies stationary wavelet and the performance is improved by haar stationary wavelet.

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

Optimizing Wavelet in Noise Canceler by Deep Learning Based on DWT (DWT 기반 딥러닝 잡음소거기에서 웨이블릿 최적화)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.113-118
    • /
    • 2024
  • In this paper, we propose an optimal wavelet in a system for canceling background noise of acoustic signals. This system performed Discrete Wavelet Transform(DWT) instead of the existing Short Time Fourier Transform(STFT) and then improved noise cancellation performance through a deep learning process. DWT functions as a multi-resolution band-pass filter and obtains transformation parameters by time-shifting the parent wavelet at each level and using several wavelets whose sizes are scaled. Here, the noise cancellation performance of several wavelets was tested to select the most suitable mother wavelet for analyzing the speech. In this study, to verify the performance of the noise cancellation system for various wavelets, a simulation program using Tensorflow and Keras libraries was created and simulation experiments were performed for the four most commonly used wavelets. As a result of the experiment, the case of using Haar or Daubechies wavelets showed the best noise cancellation performance, and the mean square error(MSE) was significantly improved compared to the case of using other wavelets.

A Scale Invariant Object Detection Algorithm Using Wavelet Transform in Sea Environment (해양 환경에서 웨이블렛 변환을 이용한 크기 변화에 무관한 물표 탐지 알고리즘)

  • Bazarvaani, Badamtseren;Park, Ki Tae;Jeong, Jongmyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.3
    • /
    • pp.249-255
    • /
    • 2013
  • In this paper, we propose an algorithm to detect scale invariant object from IR image obtained in the sea environment. We create horizontal edge (HL), vertical edge (LH), diagonal edge (HH) of images through 2-D discrete Haar wavelet transform (DHWT) technique after noise reduction using morphology operations. Considering the sea environment, Gaussian blurring to the horizontal and vertical edge images at each level of wavelet is performed and then saliency map is generated by multiplying the blurred horizontal and vertical edges and combining into one image. Then we extract object candidate region by performing a binarization to saliency map. A small area in the object candidate region are removed to produce final result. Experiment results show the feasibility of the proposed algorithm.

A Study on Illumination Mechanism of Steel Plate Inspection Using Wavelet Synthetic Images (이산 웨이블릿 합성 영상을 이용한 철강 후판 검사의 조명 메커니즘에 관한 연구)

  • Cho, Eun Deok;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.26-31
    • /
    • 2018
  • In this paper, surface defects and typical illumination mechanisms for steel plates are analyzed, and then optimum illumination mechanism is selected using discrete wavelet transform (DWT) synthetic images and discriminant measure (DM). The DWT synthetic images are generated using component images decomposed by Haar wavelet transform filter. The best synthetic image according to surface defects is determined using signal to noise ratio (SNR). The optimum illumination mechanism is selected by applying discriminant measure (DM) to the best synthetic images. The DM is applied using the tenengrad-euclidian function. The DM is evaluated as the degree of contrast using the defect boundary information. The performance of the optimum illumination mechanism is verified by quantitative data and intuitive image looks.

A Comparative Study of 3D DWT Based Space-borne Image Classification for Differnet Types of Basis Function

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • In the previous study, the Haar wavelet was used as the sole basis function for the 3D discrete wavelet transform because the number of bands is too small to decompose a remotely sensed image in band direction with other basis functions. However, it is possible to use other basis functions for wavelet decomposition in horizontal and vertical directions because wavelet decomposition is independently performed in each direction. This study aims to classify a high spatial resolution image with the six types of basis function including the Haar function and to compare those results. The other wavelets are more helpful to classify high resolution imagery than the Haar wavelet. In overall accuracy, the Coif4 wavelet has the best result. The improvement of classification accuracy is different depending on the type of class and the type of wavelet. Using the basis functions with long length could be effective for improving accuracy in classification, especially for the classes of small area. This study is expected to be used as fundamental information for selecting optimal basis function according to the data properties in the 3D DWT based image classification.

Classification of Arrhythmia Based on Discrete Wavelet Transform and Rough Set Theory

  • Kim, M.J.;J.-S. Han;Park, K.H.;W.C. Bang;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.5-28
    • /
    • 2001
  • This paper investigates a classification method of the electrocardiogram (ECG) into different disease categories. The features for the classification of the ECG are the coefficients of the discrete wavelet transform (DWT) of ECG signals. The coefficients are calculated with Haar wavelet, and after DWT we can get 64 coefficients. Each coefficient has morphological information and they may be good features when conventional time-domain features are not available. Since all of them are not meaningful, it is needed to reduce the size of meaningful coefficients set. The distributions of each coefficient can be the rules to classify ECG signal. The optimally reduced feature set is obtained by fuzzy c-means algorithm and rough set theory. First, the each coefficient is clustered by fuzzy c-means algorithm and the clustered ...

  • PDF

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

A High-Speed Directional Image Interpolation Algorithm Based-on the Analysis of Wavelet and Edge Patterns (웨이브릿 및 경계형태 분석에 기반한 고속 방향성 영상 보간 기법)

  • Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1655-1661
    • /
    • 2017
  • A high-speed directional interpolation algorithm based on the pattern of a $2{\times}2$ pixel block is proposed in this paper. The basic concept of the proposed algorithm is started from UDWT(un-decimated discrete wavelet transform), but there are no transform operations. In order to detect the direction of the edge, 4-pixel differences of two pairs in the $2{\times}2$ block are compared. The $2{\times}2$ block patterns are grouped into total 8 classes, and thereafter the directional interpolation is executed according to the type of the pattern. Since the calculation of the proposed algorithm is very simple and needs a few additions on integer data type, the computation time is almost same as that of bilinear interpolation algorithm. However, experimental results show that the output quality of the proposed one is better than those of the conventional interpolation ones in the objective quality and the computation time.

An Image Watermarking Method for Embedding Copyrighter's Audio Signal (저작권자의 음성 삽입을 위한 영상 워터마킹 방법)

  • Choi Jae-Seung;Kim Chung-Hwa;Koh Sung-Shik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.202-209
    • /
    • 2005
  • The rapid development of digital media and communication network urgently brings about the need of data certification technology to protect IPR (Intellectual property right). This paper proposed a new watermarking method for embedding owner's audio signal. Because this method uses an audio signal as a watermark to be embedded, it is very useful to claim the ownership aurally. And it has the advantage of restoring audio signal modified and especially removed by image removing attacks by applying our LBX(Linear Bit-expansion) interleaving. Three basic stages of our watermarking include: 1) Encode . analogue owner's audio signal by PCM and create new digital audio watermark, 2) Interleave an audio watermark by our LBX; and 3) Embed the interleaved audio watermark in the low frequency band on DTn (Discrete Haar Wavelet Transform) of image. The experimental results prove that this method is resistant to lossy JPEG compression as standard image compression and especially to cropping and rotation which remove a part of Image.