• Title/Summary/Keyword: Discontinuous model

Search Result 295, Processing Time 0.029 seconds

Discontinuous Grids and Time-Step Finite-Difference Method for Simulation of Seismic Wave Propagation (지진파 전파 모의를 위한 불균등 격자 및 시간간격 유한차분법)

  • 강태섭;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.50-58
    • /
    • 2003
  • We have developed a locally variable time-step scheme matching with discontinuous grids in the flute-difference method for the efficient simulation of seismic wave propagation. The first-order velocity-stress formulations are used to obtain the spatial derivatives using finite-difference operators on a staggered grid. A three-times coarser grid in the high-velocity region compared with the grid in the low-velocity region is used to avoid spatial oversampling. Temporal steps corresponding to the spatial sampling ratio between both regions are determined based on proper stability criteria. The wavefield in the margin of the region with smaller time-step are linearly interpolated in time using the values calculated in the region with larger one. The accuracy of the proposed scheme is tested through comparisons with analytic solutions and conventional finite-difference scheme with constant grid spacing and time step. The use of the locally variable time-step scheme with discontinuous grids results in remarkable saving of the computation time and memory requirement with dependency of the efficiency on the simulation model. This implies that ground motion for a realistic velocity structures including near-surface sediments can be modeled to high frequency (several Hz) without requiring severe computer memory

  • PDF

Damping Capacities of Mg-Al alloy with As-Cast and Discontinuous Precipitates Microstructures (주조 및 불연속 석출물 미세조직을 가지는 Mg-Al 합금의 진동감쇠능)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.5
    • /
    • pp.218-225
    • /
    • 2021
  • In this study, damping capacities were comparatively investigated for Mg-9%Al alloy with as-cast (AC) and fully discontinuous precipitates (DPs) microstructures, respectively. The DPs microstructure was obtained by solution treatment at 678 K for 24 h, followed by furnace cooling to RT. The AC microstructure was typically characterized by partially divorced eutectic β(Mg17Al12) phase particles distributed along the α-(Mg) matrix cell boundaries. The DPs microstructure showed lamellar morphology consisting of α and β thin layers with various interlamellar spacings. The DPs microstructure had better damping capacity than the AC microstructure in the strain-amplitude independent region, while in the strain-amplitude dependent region, the damping behavior was reversed. In view of the microstructural features of AC and DPs, the lower concentration of Al in the α-(Mg) phase for the DPs microstructure and the lower β phase number density for the AC microstructure would be responsible for the higher damping capacities in the strain-amplitude independent and strain-amplitude dependent regions, respectively.

Flow Resistance by Discontinuous Topography in Simulating Shallow-water Flow (천수 흐름 모의에서 불연속 지형에 따른 흐름 저항)

  • Hwang, Seung-Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.175-181
    • /
    • 2019
  • The hydrostatic pressure, thrust, and wall reflection by a step were studied as the flow resistance due to the discontinuous topography by using the Hwang's scheme in calculating fluxes with an approximate Riemann solver. Compared with the broad-crested weir experiments, the result simulated by using the thrust was the best among them. Hwang's scheme with the thrust by a step was applied to the side weir experiment. The results of simulation agreed well with those of the experiment. Compared to the existing depth-integrated model, the accuracy was slightly lowered, but the running time was reduced to about 20 %.

Applications of Implicit Discontinuous Galerkin Method to Shallow Water Equations (불연속 갤러킨 음해법의 천수방정식 적용)

  • Lee, Haegyun;Lee, Namjoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.569-574
    • /
    • 2020
  • Though the discontinuous Galerkin (DG) method has been developed and applied to shallow water equations mainly in explicit schemes, they have been criticized for the limitation in treatment of bottom friction terms and severe CFL conditions. In this study, an implicit scheme is devised and applied to some representative benchmark problems. The linear triangular elements were employed and the Roe numerical fluxes were adopted for convective fluxes. To preserve TVD property, the slope limiter was employed. As the case studies, the model is applied to the flow around the cylinders and the dam-break flow. Then, the results are compared with the experimental and numerical data of previous studies and good agreements were observed.

The DC/DC converter modeling using average model of switch and critical characterist (스위치 평균 모델을 이용한 DC/DC 컨버터 모델링 및 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.129-133
    • /
    • 2005
  • This paper discusses DC/DC converter modeling using average model of switch and critical characterist. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between Continuous Conduction Mode(CCM) and Discontinuous Conduction Mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment.

  • PDF

Numerical Simulation of Dam-Break Problem Using SU/PG Scheme (SU/PG 기법을 이용한 댐붕괴 수치모의)

  • Seo, Il Won;Song, Chang Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.198-198
    • /
    • 2011
  • The numerical simulation of dam break problem suffers from several challenges in terms of accuracy, stability, and versatility of the simulation algorithm since the water flow is generally discontinuous and presents abrupt variations. Thus, to obtain stable and accurate solutions, flow models for this purpose require numerical schemes provided with shock-capturing properties, and with the ability to work with flexible two-dimensional meshes. In this context, SU/PG method(Hughes and Brooks, 1979) is excellent candidate for the solution of the dam break problem. The weak formulation of the equations and the discontinuous polynomial basis lead to an accurate representation of bore waves(shocks). Furthermore, the discretization of the domain in finite elements is extremely effective in modeling complex geometries. In this study, a finite element model based on the SU/PG scheme is developed to solve shallow water equations and the model is applied to dam break problem. It is found that the present model accurately captures the bore wave that propagates downstream while spreading laterally and the depression wave that moves upstream. Furthermore, the propagation and formation of water surface profile compared favorably with those obtained by the previously published results.

  • PDF

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Hydraulic Analysis of a Discontinuous Rock Mass Using Smeared Fracture Model and DFN Model (DFN 모델과 스미어드 균열 모델을 이용한 불연속 암반의 3차원 수리해석)

  • Park, Jungchan;Kim, Jin-Seop;Lee, Changsoo;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.318-331
    • /
    • 2019
  • A three-dimensional(3D) equivalent continuum modeling was performed to analyze hydraulic behavior of rock mass considering discontinuities by using DFN model and smeared fracture model. DFN model was generated by FLAC3D and smeared fracture model was applied by using FISH functions, which is built-in functions in FLAC3D, for equivalent continuum model of fractured rock mass. Comparative analysis with 3DEC, which is for discontinuum analysis, was conducted to verify reliability of equivalent continuum analysis by using FLAC3D. Similar results of hydraulic analysis under the same conditions could be achieved. Equivalent continuum analysis of fractured rock mass by using DFN model was implemented to compare with existing analytical methods for inflow into the tunnel.

Numerical simulation and countermeasure on upheaval generation in the road caused by sliding of a slope (사면활동으로 야기된 도로부 융기발생에 대한 수치해석 및 고찰)

  • Kim, Seung-Hee;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.833-841
    • /
    • 2008
  • Recently, the upheaval generation in the road which is under service had been reported. Due to the upheaval generation, total 4 lanes were forced to curtail to 3 lanes, and traffic was delayed. In normal situation of cut-slopes in korea, that condition is hard to detect since most cut-slopes contain discontinuous material, that is rock. Common collapses in rock-slopes is wedge failure, plane failure and toppling failure which is all individual mechanism of discontinuous rock mass. In contrast, such upheaval in the road in front of cut-slope can be generated only when circular movement is triggered within the cut-slope. In this sense, rock-slopes barely show any kind of movement in the road locates at the front of them. Numerical analysis is general method in simulation of slope displacement and evaluation of safety. However, numerical analysis programs which are related with rock-slopes are not able to simulate such upheaval movement because that programs are based on discontinuous modeling mechanism. In addition, although numerical analysis programs which are based on FEM/FDM and thus utilize continuous modeling mechanism are able to simulate circular movement and upheaval situation, they have weakness in reflecting discontinuities of rock-slope itself. In this study, detailed in-site investigation and numerical analysis based on in-site condition were performed in order to expect upheaval movement in the road. In this procedure, the FLAC program which uses continuous modeling method was utilized, and new approach reflecting discontinuity developed toward the road with a ubiquitous joint model was tried to derive reliable analysis result.

  • PDF

Some Considerations on the Distinct Element Modelling for the Stability Analysis of a Tunnel in a Jointed Rock Mass (절리암반내 터널의 안정성 평가를 위한 개별요소 모델링에 대한 고찰)

  • Chang, Seok-Bue;Huh, Do-Hak
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.3-12
    • /
    • 2001
  • This paper presents the proposed methods of DE (distinct element) modelling to estimate the stability of tunnels in jointed rock masses. First, the criterion to select the joint set(s) contributed to the discontinuous behaviour in a tunnel section is proposed. Selected joint set(s) is(are) considered to form the edges of distinct elements (rock blocks) and the others to modify the elastic properties of rock blocks. The complex DE model with the average and the deviation of joint orientation and joint length for each joint set was compared to the simple model with only the average of joint orientation and the assumption that joint length is infinite. As a result, the latter is suitable to the purpose of tunnel design because it can show the consistent behaviour of a jointed rock mass such as the locally discontinuous failure and the global anisotropic behaviour.

  • PDF